Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Landau's Problems


Landau's problems are the four "unattackable" problems mentioned by Landau in the 1912 Fifth Congress of Mathematicians in Cambridge, namely:

1. TheGoldbach conjecture,

2.Twin prime conjecture,

3.Legendre's conjecture that for everyn there exists aprimep betweenn^2 and(n+1)^2 (Hardy and Wright 1979, p. 415; Ribenboim 1996, pp. 397-398), and

4. The conjecture that there are infinitely manyprimespof the formp=n^2+1 (Euler 1760; Mirsky 1949; Hardy and Wright 1979, p. 19; Ribenboim 1996, pp. 206-208). The first few such primes are 2, 5, 17, 37, 101, 197, 257, 401, ... (OEISA002496).

Although it is not known if there always exists aprimep betweenn^2 and(n+1)^2, Chen (1975) has shown that a numberP which is either aprime orsemiprime does always satisfy this inequality. Moreover, there is always a prime betweenn-n^theta andn wheretheta=23/42 (Iwaniec and Pintz 1984; Hardy and Wright 1979, p. 415). The smallestprimes betweenn^2 and(n+1)^2 forn=1, 2, ..., are 2, 5, 11, 17, 29, 37, 53, 67, 83, ... (OEISA007491).

The first fewprimesp which areof the formp=n^2+1 are given by 2, 5, 17, 37, 101, 197, 257, 401, ... (OEISA002496). These correspond ton=1, 2, 4, 6, 10, 14, 16, 20, ... (OEISA005574; Hardy and Wright 1979, p. 19).


See also

Bertrand's Postulate,Goldbach Conjecture,Good Prime,Prime Number,Twin Prime Conjecture

Explore with Wolfram|Alpha

References

Chen, J. R. "On the Distribution of Almost Primes in an Interval."Sci. Sinica18, 611-627, 1975.Euler, L. "De numeris primis valde magnis."Novi Commentarii academiae scientiarum Petropolitanae9, 99-153, (1760) 1764. Reprinted inCommentat. arithm.1, 356-378, 1849. Reprinted inOpera Omnia: Series 1, Volume 3, pp. 1-45.Goldman, J. R.The Queen of Mathematics: An Historically Motivated Guide to Number Theory. Wellesley, MA: A K Peters, p. 22, 1998.Hardy, G. H. and Wright, W. M. "Unsolved Problems Concerning Primes." §2.8 and Appendix §3 inAn Introduction to the Theory of Numbers, 5th ed. Oxford, England: Oxford University Press, pp. 19 and 415-416, 1979.Iwaniec, H. and Pintz, J. "Primes in Short Intervals."Monatsh. f. Math.98, 115-143, 1984.Ogilvy, C. S.Tomorrow's Math: Unsolved Problems for the Amateur, 2nd ed. Oxford, England: Oxford University Press, p. 116, 1972.Ribenboim, P.The New Book of Prime Number Records, 3rd ed. New York: Springer-Verlag, pp. 132-134 and 206-208, 1996.Sloane, N. J. A. SequencesA002496/M1506,A005574/M1010, andA007491/M1389 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Landau's Problems

Cite this as:

Weisstein, Eric W. "Landau's Problems."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/LandausProblems.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp