Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Inverse Hyperbolic Tangent


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook
ArcTanh
ArcTanhReIm
ArcTanhContours

The inverse hyperbolic tangenttanh^(-1)z (Zwillinger 1995, p. 481; Beyer 1987, p. 181), sometimes called the area hyperbolic tangent (Harris and Stocker 1998, p. 267), is themultivalued function that is theinverse function of thehyperbolic tangent.

The function is sometimes denotedarctanhz (Jeffrey 2000, p. 124) orArthz (Gradshteyn and Ryzhik 2000, p. xxx). The variantsArctanhz orArtanhz (Harris and Stocker 1998, p. 263) are sometimes used to refer to explicitprincipal values of the inverse hyperbolic tangent, although this distinction is not always made. Worse yet, the notationarctanhz is sometimes used for the principal value, withArctanhz being used for the multivalued function (Abramowitz and Stegun 1972, p. 87). Note that in the notationtanh^(-1)z,tanhz is thehyperbolic tangent and the superscript-1 denotes aninverse function,not the multiplicative inverse.

Theprincipal value oftanh^(-1)z is implemented in theWolfram Language asArcTanh[z] and in the GNU C library asatanh(double x).

InverseHyperbolicTangentBranchCut

The inverse hyperbolic tangent is amultivalued function and hence requires abranch cut in thecomplex plane, which theWolfram Language's convention places at the line segments(-infty,-1] and[1,infty). This follows from the definition oftanh^(-1)z as

 tanh^(-1)z=1/2[ln(1+z)-ln(1-z)].
(1)

The inverse hyperbolic tangent is given in terms of theinversetangent by

 tanh^(-1)z=1/itan^(-1)(iz)
(2)

(Gradshteyn and Ryzhik 2000, p. xxx). For realx<1, this simplifies to

 tanh^(-1)x=1/2ln((1+x)/(1-x)).
(3)

Thederivative of the inverse hyperbolic tangent is

 d/(dz)tanh^(-1)z=1/(1-z^2),
(4)

and theindefinite integral is

 inttanh^(-1)zdz=ztanh^(-1)z+1/2ln(z^2-1)+C.
(5)

It has special values

tanh^(-1)0=0
(6)
tanh^(-1)1=infty
(7)
tanh^(-1)infty=-1/2pii
(8)
tanh^(-1)i=1/4pii.
(9)

It hasMaclaurin series

tanh^(-1)z=sum_(n=1)^(infty)(z^(2n-1))/(2n-1)
(10)
=z+1/3z^3+1/5z^5+1/7z^7+1/9z^9+...
(11)
tanh^(-1)z=-1/2pii+sum_(n=1)^(infty)(z^(-2n+1))/(2n-1)
(12)
=-1/2pii+z+1/3z^3+1/5z^5+1/7z^7+...
(13)

(OEISA005408).

Anindefinite integral involvingtanh^(-1)z is given by

int(dx)/(xsqrt(a+bx))=ln[(sqrt(a+bx)-sqrt(a))/(sqrt(a+bx)+sqrt(a))]
(14)
=ln[((sqrt(a+bx)-sqrt(a))^2)/((a+bx)-a)]
(15)
=ln[((2a+bx)-2sqrt(a(a+bx)))/(bx)]
(16)
=2tanh^(-1)(-sqrt(a/(a+bx)))
(17)

whena>0.


See also

Hyperbolic Tangent,Inverse Hyperbolic Cotangent,Inverse Hyperbolic Functions

Related Wolfram sites

http://functions.wolfram.com/ElementaryFunctions/ArcTanh/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Inverse Hyperbolic Functions." §4.6 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 86-89, 1972.Beyer, W. H.CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 142-143, 1987.GNU C Library. "Mathematics: Inverse Trigonometric Functions."http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_19.html#SEC391.Gradshteyn, I. S. and Ryzhik, I. M.Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. xxx, 2000.Harris, J. W. and Stocker, H.Handbook of Mathematics and Computational Science. New York: Springer-Verlag, 1998.Jeffrey, A. "Inverse Trigonometric and Hyperbolic Functions." §2.7 inHandbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 124-128, 2000.Sloane, N. J. A. SequenceA005408/M2400 in "The On-Line Encyclopedia of Integer Sequences."Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 inAn Atlas of Functions. Washington, DC: Hemisphere, pp. 331-341, 1987.Zwillinger, D. (Ed.). "Inverse Hyperbolic Functions." §6.8 inCRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 481-483, 1995.

Referenced on Wolfram|Alpha

Inverse Hyperbolic Tangent

Cite this as:

Weisstein, Eric W. "Inverse Hyperbolic Tangent."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/InverseHyperbolicTangent.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2026 Movatter.jp