Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Inverse Hyperbolic Sine


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook
ArcSinh
ArcSinhReIm
ArcSinhContours

The inverse hyperbolic sinesinh^(-1)z (Beyer 1987, p. 181; Zwillinger 1995, p. 481), sometimes called the area hyperbolic sine (Harris and Stocker 1998, p. 264) is themultivalued function that is theinverse function of thehyperbolic sine.

The variantsArcsinhz orArsinhz (Harris and Stocker 1998, p. 263) are sometimes used to refer to explicitprincipal values of the inverse hyperbolic sine, although this distinction is not always made. Worse yet, the notationarcsinhz is sometimes used for the principal value, withArcsinhz being used for the multivalued function (Abramowitz and Stegun 1972, p. 87). The notationsarcsinhz (Jeffrey 2000, p. 124) andArshz (Gradshteyn and Ryzhik 2000, p. xxx) are sometimes also used. Note that in the notationsinh^(-1)z,sinhz is thehyperbolic sine and the superscript-1 denotes aninverse function,not the multiplicative inverse.

Itsprincipal value ofsinh^(-1)z is implemented in theWolfram Language asArcSinh[z] and in the GNU C library asasinh(double x).

InverseHyperbolicSineBranchCut

The inverse hyperbolic sine is amultivalued function and hence requires abranch cut in thecomplex plane, which theWolfram Language's convention places at the line segments(-iinfty,-i) and(i,iinfty). This follows from the definition ofsinh^(-1)z as

 sinh^(-1)z=ln(z+sqrt(1+z^2)).
(1)

The inverse hyperbolic sine is given in terms of theinversesine by

 sinh^(-1)z=1/isin^(-1)(iz)
(2)

(Gradshteyn and Ryzhik 2000, p. xxx).

Thederivative of the inverse hyperbolic sine is

 d/(dz)sinh^(-1)z=1/(sqrt(1+z^2)),
(3)

and theindefinite integral is

 intsinh^(-1)zdz=zsinh^(-1)z-sqrt(1+z^2)+C.
(4)

It has aMaclaurin series

sinh^(-1)x=sum_(k=1)^(infty)(P_(k-1)(0))/kx^k
(5)
=sum_(n=0)^(infty)((-1)^n(2n-1)!!)/((2n+1)(2n)!!)x^(2n+1)
(6)
=x-1/6x^3+3/(40)x^5-5/(112)x^7+(35)/(1152)x^9+...
(7)

(OEISA055786 andA002595), whereP_n(x) is aLegendre polynomial. It has a Taylor series about infinity of

sinh^(-1)x=-ln(x^(-1))+ln2+sum_(n=1)^(infty)((-1)^(n-1)(2n-1)!!)/(2n(2n)!!)x^(-2n)
(8)
=-ln(x^(-1))+ln2+1/4x^(-2)-3/(32)x^(-4)+5/(96)x^(-6)-...
(9)

(OEISA052468 andA052469).


See also

Hyperbolic Sine,InverseHyperbolic Functions

Related Wolfram sites

http://functions.wolfram.com/ElementaryFunctions/ArcSinh/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Inverse Circular Functions." §4.4 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 79-83, 1972.Beyer, W. H.CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 142-143, 1987.GNU C Library. "Mathematics: Inverse Trigonometric Functions."http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_19.html#SEC391.Gradshteyn, I. S. and Ryzhik, I. M.Tables of Integrals, Series, and Products, 6th ed. San Diego, CA: Academic Press, p. xxx, 2000.Harris, J. W. and Stocker, H.Handbook of Mathematics and Computational Science. New York: Springer-Verlag, 1998.Jeffrey, A. "Inverse Trigonometric and Hyperbolic Functions." §2.7 inHandbook of Mathematical Formulas and Integrals, 2nd ed. Orlando, FL: Academic Press, pp. 124-128, 2000.Sloane, N. J. A. SequencesA002595/M4233,A052468,A052469, andA055786 in "The On-Line Encyclopedia of Integer Sequences."Spanier, J. and Oldham, K. B. "Inverse Trigonometric Functions." Ch. 35 inAn Atlas of Functions. Washington, DC: Hemisphere, pp. 331-341, 1987.Zwillinger, D. (Ed.). "Inverse Hyperbolic Functions." §6.8 inCRC Standard Mathematical Tables and Formulae. Boca Raton, FL: CRC Press, pp. 481-483, 1995.

Referenced on Wolfram|Alpha

Inverse Hyperbolic Sine

Cite this as:

Weisstein, Eric W. "Inverse Hyperbolic Sine."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/InverseHyperbolicSine.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2026 Movatter.jp