Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Fourier Transform


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

The Fourier transform is a generalization of thecomplexFourier series in the limit asL->infty. Replace the discreteA_n with the continuousF(k)dk while lettingn/L->k. Then change the sum to anintegral, and the equations become

f(x)=int_(-infty)^inftyF(k)e^(2piikx)dk
(1)
F(k)=int_(-infty)^inftyf(x)e^(-2piikx)dx.
(2)

Here,

F(k)=F_x[f(x)](k)
(3)
=int_(-infty)^inftyf(x)e^(-2piikx)dx
(4)

is called theforward (-i) Fourier transform, and

f(x)=F_k^(-1)[F(k)](x)
(5)
=int_(-infty)^inftyF(k)e^(2piikx)dk
(6)

is called theinverse (+i) Fourier transform. The notationF_x[f(x)](k) is introduced in Trott (2004, p. xxxiv), andf^^(k) andf^_(x) are sometimes also used to denote the Fourier transform and inverse Fourier transform, respectively (Krantz 1999, p. 202).

Note that some authors (especially physicists) prefer to write the transform in terms of angular frequencyomega=2pinu instead of the oscillation frequencynu. However, this destroys the symmetry, resulting in the transform pair

H(omega)=F[h(t)]
(7)
=int_(-infty)^inftyh(t)e^(-iomegat)dt
(8)
h(t)=F^(-1)[H(omega)]
(9)
=1/(2pi)int_(-infty)^inftyH(omega)e^(iomegat)domega.
(10)

To restore the symmetry of the transforms, the convention

g(y)=F[f(t)]
(11)
=1/(sqrt(2pi))int_(-infty)^inftyf(t)e^(-iyt)dt
(12)
f(t)=F^(-1)[g(y)]
(13)
=1/(sqrt(2pi))int_(-infty)^inftyg(y)e^(iyt)dy
(14)

is sometimes used (Mathews and Walker 1970, p. 102).

In general, the Fourier transform pair may be defined using two arbitrary constantsa andb as

F(omega)=sqrt((|b|)/((2pi)^(1-a)))int_(-infty)^inftyf(t)e^(ibomegat)dt
(15)
f(t)=sqrt((|b|)/((2pi)^(1+a)))int_(-infty)^inftyF(omega)e^(-ibomegat)domega.
(16)

The Fourier transformF(k) of a functionf(x) is implemented theWolfram Language asFourierTransform[f,x,k], and different choices ofa andb can be used by passing the optionalFourierParameters->{a,b} option. By default, theWolfram Language takesFourierParameters as(0,1). Unfortunately, a number of other conventions are in widespread use. For example,(0,1) is used in modern physics,(1,-1) is used in pure mathematics and systems engineering,(1,1) is used in probability theory for the computation of thecharacteristic function,(-1,1) is used in classical physics, and(0,-2pi) is used in signal processing. In this work, following Bracewell (1999, pp. 6-7),it is always assumed thata=0 andb=-2pi unless otherwise stated. This choice often results in greatly simplified transforms of common functions such as 1,cos(2pik_0x), etc.

Since any function can be split up intoeven andodd portionsE(x) andO(x),

f(x)=1/2[f(x)+f(-x)]+1/2[f(x)-f(-x)]
(17)
=E(x)+O(x),
(18)

a Fourier transform can always be expressed in terms of theFourier cosine transform andFourier sine transform as

 F_x[f(x)](k)=int_(-infty)^inftyE(x)cos(2pikx)dx-iint_(-infty)^inftyO(x)sin(2pikx)dx.
(19)

A functionf(x) has a forward and inverse Fourier transform such that

 f(x)={int_(-infty)^inftye^(2piikx)[int_(-infty)^inftyf(x)e^(-2piikx)dx]dk   for f(x) continuous at x; 1/2[f(x_+)+f(x_-)]   for f(x) discontinuous at x,
(20)

provided that

1.int_(-infty)^infty|f(x)|dx exists.

2. There are a finite number of discontinuities.

3. The function has bounded variation. Asufficient weaker condition is fulfillment of theLipschitz condition

(Ramirez 1985, p. 29). The smoother a function (i.e., the larger the number of continuousderivatives), the more compact its Fourier transform.

The Fourier transform is linear, since iff(x) andg(x) have Fourier transformsF(k) andG(k), then

int[af(x)+bg(x)]e^(-2piikx)dx=aint_(-infty)^inftyf(x)e^(-2piikx)dx+bint_(-infty)^inftyg(x)e^(-2piikx)dx
(21)
=aF(k)+bG(k).
(22)

Therefore,

F[af(x)+bg(x)]=aF[f(x)]+bF[g(x)]
(23)
=aF(k)+bG(k).
(24)

The Fourier transform is also symmetric sinceF(k)=F_x[f(x)](k) impliesF(-k)=F_x[f(-x)](k).

Letf*g denote theconvolution, then the transforms of convolutions of functions have particularly nice transforms,

F[f*g]=F[f]F[g]
(25)
F[fg]=F[f]*F[g]
(26)
F^(-1)[F(f)F(g)]=f*g
(27)
F^(-1)[F(f)*F(g)]=fg.
(28)

The first of these is derived as follows:

F[f*g]=int_(-infty)^inftyint_(-infty)^inftye^(-2piikx)f(x^')g(x-x^')dx^'dx
(29)
=int_(-infty)^inftyint_(-infty)^infty[e^(-2piikx^')f(x^')dx^'][e^(-2piik(x-x^'))g(x-x^')dx]
(30)
=[int_(-infty)^inftye^(-2piikx^')f(x^')dx^'][int_(-infty)^inftye^(-2piikx^(''))g(x^(''))dx^('')]
(31)
=F[f]F[g],
(32)

wherex^('')=x-x^'.

There is also a somewhat surprising and extremely important relationship between theautocorrelation and the Fourier transform known as theWiener-Khinchin theorem. LetF_x[f(x)](k)=F(k), andf^_ denote thecomplex conjugate off, then the Fourier transform of theabsolute square ofF(k) is given by

 F_k[|F(k)|^2](x)=int_(-infty)^inftyf^_(tau)f(tau+x)dtau.
(33)

The Fourier transform of aderivativef^'(x) of a functionf(x) is simply related to the transform of the functionf(x) itself. Consider

 F_x[f^'(x)](k)=int_(-infty)^inftyf^'(x)e^(-2piikx)dx.
(34)

Now useintegration by parts

 intvdu=[uv]-intudv
(35)

with

du=f^'(x)dx
(36)
v=e^(-2piikx)
(37)

and

u=f(x)
(38)
dv=-2piike^(-2piikx)dx,
(39)

then

 F_x[f^'(x)](k)=[f(x)e^(-2piikx)]_(-infty)^infty-int_(-infty)^inftyf(x)(-2piike^(-2piikx)dx).
(40)

The first term consists of an oscillating function timesf(x). But if the function is bounded so that

 lim_(x->+/-infty)f(x)=0
(41)

(as any physically significant signal must be), then the term vanishes, leaving

F_x[f^'(x)](k)=2piikint_(-infty)^inftyf(x)e^(-2piikx)dx
(42)
=2piikF_x[f(x)](k).
(43)

This process can be iterated for thenthderivative to yield

 F_x[f^((n))(x)](k)=(2piik)^nF_x[f(x)](k).
(44)

The importantmodulation theorem of Fourier transforms allowsF_x[cos(2pik_0x)f(x)](k) to be expressed in terms ofF_x[f(x)](k)=F(k) as follows,

F_x[cos(2pik_0x)f(x)](k)=int_(-infty)^inftyf(x)cos(2pik_0x)e^(-2piikx)dx
(45)
=1/2int_(-infty)^inftyf(x)e^(2piik_0x)e^(-2piikx)dx+1/2int_(-infty)^inftyf(x)e^(-2piik_0x)e^(-2piikx)dx
(46)
=1/2int_(-infty)^inftyf(x)e^(-2pii(k-k_0)x)dx+1/2int_(-infty)^inftyf(x)e^(-2pii(k+k_0)x)dx
(47)
=1/2[F(k-k_0)+F(k+k_0)].
(48)

Since thederivative of the Fourier transform is givenby

 F^'(k)=d/(dk)F_x[f(x)](k)=int_(-infty)^infty(-2piix)f(x)e^(-2piikx)dx,
(49)

it follows that

 F^'(0)=-2piiint_(-infty)^inftyxf(x)dx.
(50)

Iterating gives the generalformula

mu_n=int_(-infty)^inftyx^nf(x)dx
(51)
=(F^((n))(0))/((-2pii)^n).
(52)

Thevariance of a Fourier transform is

 sigma_f^2=<(xf-<xf>)^2>,
(53)

and it is true that

 sigma_(f+g)=sigma_f+sigma_g.
(54)

Iff(x) has the Fourier transformF_x[f(x)](k)=F(k), then the Fourier transform has the shift property

int_(-infty)^inftyf(x-x_0)e^(-2piikx)dx=int_(-infty)^inftyf(x-x_0)e^(-2pii(x-x_0)k)e^(-2pii(kx_0))d(x-x_0)
(55)
=e^(-2piikx_0)F(k),
(56)

sof(x-x_0) has the Fourier transform

 F_x[f(x-x_0)](k)=e^(-2piikx_0)F(k).
(57)

Iff(x) has a Fourier transformF_x[f(x)](k)=F(k), then the Fourier transform obeys a similarity theorem.

 int_(-infty)^inftyf(ax)e^(-2piikx)dx=1/(|a|)int_(-infty)^inftyf(ax)e^(-2pii(ax)(k/a))d(ax)=1/(|a|)F(k/a),
(58)

sof(ax) has the Fourier transform

 F_x[f(ax)](k)=|a|^(-1)F(k/a).
(59)

The "equivalent width" of a Fourier transform is

w_e=(int_(-infty)^inftyf(x)dx)/(f(0))
(60)
=(F(0))/(int_(-infty)^inftyF(k)dk).
(61)

The "autocorrelation width" is

w_a=(int_(-infty)^inftyf*f^_dx)/([f*f^_]_0)
(62)
=(int_(-infty)^inftyfdxint_(-infty)^inftyf^_dx)/(int_(-infty)^inftyff^_dx),
(63)

wheref*g denotes thecross-correlation off andg andf^_ is thecomplex conjugate.

Any operation onf(x) which leaves itsarea unchanged leavesF(0) unchanged, since

 int_(-infty)^inftyf(x)dx=F_x[f(x)](0)=F(0).
(64)

The following table summarized some common Fourier transform pairs.

In two dimensions, the Fourier transform becomes

F(x,y)=int_(-infty)^inftyint_(-infty)^inftyf(k_x,k_y)e^(-2pii(k_xx+k_yy))dk_xdk_y
(65)
f(k_x,k_y)=int_(-infty)^inftyint_(-infty)^inftyF(x,y)e^(2pii(k_xx+k_yy))dxdy.
(66)

Similarly, then-dimensional Fourier transform can be defined fork,x in R^n by

F(x)=int_(-infty)^infty...int_(-infty)^infty_()_(n)f(k)e^(-2piik·x)d^nk
(67)
f(k)=int_(-infty)^infty...int_(-infty)^infty_()_(n)F(x)e^(2piik·x)d^nx.
(68)

See also

Autocorrelation,Convolution,Discrete Fourier Transform,Fast Fourier Transform,Fourier Series,Fourier-Stieltjes Transform,Fourier Transform--1,Fourier Transform--Cosine,Fourier Transform--Delta Function,Fourier Transform--Exponential Function,Fourier Transform--Gaussian,Fourier Transform--Heaviside Step Function,Fourier Transform--Inverse Function,Fourier Transform--Lorentzian Function,Fourier Transform--Ramp Function,Fourier Transform--Rectangle Function,Fractional Fourier Transform,Hankel Transform,Hartley Transform,Integral Transform,Laplace Transform,Parseval's Theorem,Structure Factor,Wiener-Khinchin Theorem,Winograd TransformExplore this topic in the MathWorld classroom

Explore with Wolfram|Alpha

References

Arfken, G. "Development of the Fourier Integral," "Fourier Transforms--Inversion Theorem," and "Fourier Transform of Derivatives." §15.2-15.4 inMathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 794-810, 1985.Blackman, R. B. and Tukey, J. W.The Measurement of Power Spectra, From the Point of View of Communications Engineering. New York: Dover, 1959.Bracewell, R.The Fourier Transform and Its Applications, 3rd ed. New York: McGraw-Hill, 1999.Brigham, E. O.The Fast Fourier Transform and Applications. Englewood Cliffs, NJ: Prentice Hall, 1988.Folland, G. B.Real Analysis: Modern Techniques and their Applications, 2nd ed. New York: Wiley, 1999.James, J. F.A Student's Guide to Fourier Transforms with Applications in Physics and Engineering. New York: Cambridge University Press, 1995.Kammler, D. W.A First Course in Fourier Analysis. Upper Saddle River, NJ: Prentice Hall, 2000.Körner, T. W.Fourier Analysis. Cambridge, England: Cambridge University Press, 1988.Krantz, S. G. "The Fourier Transform." §15.2 inHandbook of Complex Variables. Boston, MA: Birkhäuser, pp. 202-212, 1999.Mathews, J. and Walker, R. L.Mathematical Methods of Physics, 2nd ed. Reading, MA: W. A. Benjamin/Addison-Wesley, 1970.Morrison, N.Introduction to Fourier Analysis. New York: Wiley, 1994.Morse, P. M. and Feshbach, H. "Fourier Transforms." §4.8 inMethods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 453-471, 1953.Oberhettinger, F.Fourier Transforms of Distributions and Their Inverses: A Collection of Tables. New York: Academic Press, 1973.Papoulis, A.The Fourier Integral and Its Applications. New York: McGraw-Hill, 1962.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, 1989.Ramirez, R. W.The FFT: Fundamentals and Concepts. Englewood Cliffs, NJ: Prentice-Hall, 1985.Sansone, G. "The Fourier Transform." §2.13 inOrthogonal Functions, rev. English ed. New York: Dover, pp. 158-168, 1991.Sneddon, I. N.Fourier Transforms. New York: Dover, 1995.Sogge, C. D.Fourier Integrals in Classical Analysis. New York: Cambridge University Press, 1993.Spiegel, M. R.Theory and Problems of Fourier Analysis with Applications to Boundary Value Problems. New York: McGraw-Hill, 1974.Stein, E. M. and Weiss, G. L.Introduction to Fourier Analysis on Euclidean Spaces. Princeton, NJ: Princeton University Press, 1971.Strichartz, R.Fourier Transforms and Distribution Theory. Boca Raton, FL: CRC Press, 1993.Titchmarsh, E. C.Introduction to the Theory of Fourier Integrals, 3rd ed. Oxford, England: Clarendon Press, 1948.Tolstov, G. P.Fourier Series. New York: Dover, 1976.Trott, M.The Mathematica GuideBook for Programming. New York: Springer-Verlag, 2004.http://www.mathematicaguidebooks.org/.Walker, J. S.Fast Fourier Transforms, 2nd ed. Boca Raton, FL: CRC Press, 1996.Weisstein, E. W. "Books about Fourier Transforms."http://www.ericweisstein.com/encyclopedias/books/FourierTransforms.html.

Referenced on Wolfram|Alpha

Fourier Transform

Cite this as:

Weisstein, Eric W. "Fourier Transform."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/FourierTransform.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp