Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Euler's Sum of Powers Conjecture


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

Euler conjectured that at leastnnthpowers are required forn>2 to provide a sum that is itself annthpower. The conjecture was disproved by Lander and Parkin (1967) with the counterexample

 27^5+84^5+110^5+133^5=144^5.
(1)

Ekl (1998) defined an extended Euler conjecture that there are no solutions to thek.m.nDiophantine equation

 a_1^k+a_2^k+...+a_m^k=b_1^k+b_2^k+...+b_n^k,
(2)

witha_i andb_i not necessarily distinct, such thatm+n<k. Defining

 Delta_k=min_(m,n)(m+n-k)
(3)

over all known solutions tok.m.n equations, this conjecture asserts thatDelta_k>=0. There are no known counterexamples to this conjecture (Ekl 1998). The following table gives the smallest known values ofDelta_k for smallk.

kmin.Delta_k soln.Delta_kreference
44.1.30Elkies (1988)
55.1.40Lander et al. (1967)
66.3.30Subba Rao (1934)
77.4.41Ekl (1996)
88.3.50S. Chase (Meyrignac)
88.4.40N. Kuosa (Nov. 9, 2006; Meyrignac)
99.5.51Ekl 1997 (Meyrignac)
1010.6.62N. Kuosa (2002; Meyrignac)

S. Chase found a 8.3.5 (Delta_8=0) solution that displaced the 8.5.5 (Delta_8=2) solution of Letac (1942). In 2006, N. Kuosa found an 8.4.4 solution withDelta_8=0. Ekl (1996, 1998) found 9.4.6 and 9.5.5 solutions (both withDelta_9=1), displacing the 9.6.6 (Delta_9=3) solution of Landeret al.(1967). Three 10.6.6 solutions were found by N. Kuosa (withDelta_(10)=2), displacing the 10.7.7 (Delta_(10)=4) solution of Moessner (1939).


See also

Diophantine Equation--4th Powers,Diophantine Equation--6th Powers,Diophantine Equation--7th Powers,Diophantine Equation--8th Powers,Diophantine Equation--9th Powers,Diophantine Equation--10th Powers,Diophantine Equation--nth Powers,Euler Quartic Conjecture

Explore with Wolfram|Alpha

References

Dutch, S. "Power Page: Euler's Conjecture."http://www.uwgb.edu/dutchs/RECMATH/rmpowers.htm#eulercon.Ekl, R. L. "Equal Sums of Four Seventh Powers."Math. Comput.65, 1755-1756, 1996.Ekl, R. L. "New Results in Equal Sums of Like Powers."Math. Comput.67, 1309-1315, 1998.Elkies, N. "OnA^4+B^4+C^4=D^4."Math. Comput.51, 828-838, 1988.Hoffman, P.The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth. New York: Hyperion, p. 195, 1998.Lander, L. J. and Parkin, T. R. "A Counterexample to Euler's Sum of Powers Conjecture."Math. Comput.21, 101-103, 1967.Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. "A Survey of Equal Sums of Like Powers."Math. Comput.21, 446-459, 1967.Letac, A.Gazetta Mathematica48, 68-69, 1942.Meyrignac, J.-C. "Computing Minimal Equal Sums of Like Powers."http://euler.free.fr.Moessner, A. "Einige Numerische Identitaten."Proc. Indian Acad. Sci. Sect. A10, 296-306, 1939.Subba Rao, K. "On Sums of Sixth Powers."J. London Math. Soc.9, 172-173, 1934.

Referenced on Wolfram|Alpha

Euler's Sum of Powers Conjecture

Cite this as:

Weisstein, Eric W. "Euler's Sum of Powers Conjecture."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/EulersSumofPowersConjecture.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp