Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Erfc


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook
Erfc

Erfc is the complementary error function, commonly denotederfc(z), is anentire function defined by

erfc(z)=1-erf(z)
(1)
=2/(sqrt(pi))int_z^inftye^(-t^2)dt.
(2)

It is implemented in theWolfram LanguageasErfc[z].

Note that some authors (e.g., Whittaker and Watson 1990, p. 341) defineerfc(z) without the leading factor of2/sqrt(pi).

Forz>0,

 erfc(z)=(Gamma(1/2,z^2))/(sqrt(pi)),
(3)

whereGamma(a,x) is theincomplete gamma function.

The derivative is given by

 d/(dz)erfc(z)=-(2e^(-z^2))/(sqrt(pi)),
(4)

and the indefinite integral by

 interfc(z)dz=zerfc(z)-(e^(-z^2))/(sqrt(pi))+C.
(5)

It has the special values

erfc(-infty)=2
(6)
erfc(0)=1
(7)
erfc(infty)=0.
(8)

It satisfies the identity

 erfc(-x)=2-erfc(x).
(9)

It has definite integrals

int_0^inftyerfc(x)dx=1/(sqrt(pi))
(10)
int_0^inftyerfc^2(x)dx=(2-sqrt(2))/(sqrt(pi))
(11)
int_0^inftysin(x^2)erfc(x)dx=(pi-2sinh^(-1)1)/(4sqrt(2pi)).
(12)
ErfcBounds

Forx>0,erfc(x) is bounded by

 2/(sqrt(pi))(e^(-x^2))/(x+sqrt(x^2+2))<erfc(x)<=2/(sqrt(pi))(e^(-x^2))/(x+sqrt(x^2+4/pi)).
(13)
ErfcReIm
ErfcContours

Erfc can also be extended to the complex plane, as illustrated above.

Erfci

A generalization is obtained from theerfcdifferential equation

 (d^2y)/(dz^2)+2z(dy)/(dz)-2ny=0
(14)

(Abramowitz and Stegun 1972, p. 299; Zwillinger 1997, p. 122). The general solution is then

 y=Aerfc_n(z)+Berfc_n(-z),
(15)

whereerfc_n(z) is the repeated erfc integral. For integern>=1,

erfc_n(z)=int_z^infty...int_z^infty_()_(n)erfc(z)dz
(16)
=-2/(sqrt(pi))int_z^infty((t-z)^n)/(n!)e^(-t^2)dt
(17)
=(e^(-z^2))/(sqrt(pi)n!)[Gamma(1/2(n+1))_1F_1(1/2(n+1);1/2;z^2)-nz_1F_1(1+1/2n;3/2;z^2)]
(18)
=2^(-n)e^(-z^2)[(_1F_1(1/2(n+1);1/2;z^2))/(Gamma(1+1/2n))-(2z_1F_1(1+1/2n;3/2;z^2))/(Gamma(1/2(n+1)))]
(19)

(Abramowitz and Stegun 1972, p. 299), where_1F_1(a;b;z) is aconfluent hypergeometric function of the first kind andGamma(z) is agamma function. The first few values, extended by the definition forn=-1 and 0, are given by

erfc_0(z)=erfc(z)
(20)
erfc_1(z)=(e^(-z^2))/(sqrt(pi))-zerfc(z)
(21)
erfc_2(z)=1/4[(1+2z^2)erfc(z)-(2ze^(-z^2))/(sqrt(pi))].
(22)

See also

Erf,Erfc Differential Equation,Erfi,Hh Function,Inverse Erfc

Related Wolfram sites

http://functions.wolfram.com/GammaBetaErf/Erfc/

Explore with Wolfram|Alpha

WolframAlpha

More things to try:

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Repeated Integrals of the Error Function." §7.2 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 299-300, 1972.Arfken, G.Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 568-569, 1985.Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. "Incomplete Gamma Function, Error Function, Chi-Square Probability Function, Cumulative Poisson Function." §6.2 inNumerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England: Cambridge University Press, pp. 209-214, 1992.Spanier, J. and Oldham, K. B. "The Error Functionerf(x) and Its Complementerfc(x)" and "Theexp(x) anderfc(sqrt(x)) and Related Functions." Chs. 40 and 41 inAn Atlas of Functions. Washington, DC: Hemisphere, pp. 385-393 and 395-403, 1987.Whittaker, E. T. and Watson, G. N.A Course in Modern Analysis, 4th ed. Cambridge, England: Cambridge University Press, 1990.Zwillinger, D.Handbook of Differential Equations, 3rd ed. Boston, MA: Academic Press, p. 122, 1997.

Referenced on Wolfram|Alpha

Erfc

Cite this as:

Weisstein, Eric W. "Erfc." FromMathWorld--AWolfram Resource.https://mathworld.wolfram.com/Erfc.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2026 Movatter.jp