Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Elliptic Integral of the Third Kind


Let0<k^2<1. The incomplete elliptic integral of the third kind is then defined as

Pi(n;phi,k)=int_0^phi(dtheta)/((1-nsin^2theta)sqrt(1-k^2sin^2theta))
(1)
=int_0^(sinphi)(dt)/((1-nt^2)sqrt((1-t^2)(1-k^2t^2))),
(2)

wheren is a constant known as theelliptic characteristic andk is theelliptic modulus. It is implemented in theWolfram Language asEllipticPi[n,phi,m].

EllipticPi

Thecomplete elliptic integralof the third kind

 Pi(n|m)=Pi(n;1/2pi|m)
(3)

is illustrated above.


See also

Complete Elliptic Integral of the Third Kind,Elliptic Integral of the First Kind,Elliptic Integral of the Second Kind,Elliptic Integral Singular Value,Elliptic Modulus

Related Wolfram sites

http://functions.wolfram.com/EllipticIntegrals/EllipticPi3/

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Elliptic Integrals" and "Elliptic Integrals of the Third Kind." Ch. 17 and §17.7 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 587-607, 1972.Tölke, F. "Normalintegrale dritter Gattung. LegendreschePi-Funktion. Zurückführung des allgemeinen elliptischen Integrals auf Normalintegrale erster, zweiter, und dritter Gattung." Ch. 7 inPraktische Funktionenlehre, dritter Band: Jacobische elliptische Funktionen, Legendresche elliptische Normalintegrale und spezielle Weierstraßsche Zeta- und Sigma Funktionen. Berlin: Springer-Verlag, pp. 100-144, 1967.

Referenced on Wolfram|Alpha

Elliptic Integral of the Third Kind

Cite this as:

Weisstein, Eric W. "Elliptic Integral of theThird Kind." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/EllipticIntegraloftheThirdKind.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2026 Movatter.jp