Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Confocal Ellipsoidal Coordinates


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook
ConfocalQuadrics

The confocal ellipsoidal coordinates, called simply "ellipsoidal coordinates" by Morse and Feshbach (1953) and "elliptic coordinates" by Hilbert and Cohn-Vossen (1999, p. 22), are given by the equations

(x^2)/(a^2+xi)+(y^2)/(b^2+xi)+(z^2)/(c^2+xi)=1
(1)
(x^2)/(a^2+eta)+(y^2)/(b^2+eta)+(z^2)/(c^2+eta)=1
(2)
(x^2)/(a^2+zeta)+(y^2)/(b^2+zeta)+(z^2)/(c^2+zeta)=1,
(3)

where-c^2<xi<infty,-b^2<eta<-c^2, and-a^2<zeta<-b^2. These coordinates correspond to threeconfocal quadrics all sharing the same pair of foci. Surfaces of constantxi are confocalellipsoids, surfaces of constanteta are one-sheetedhyperboloids, and surfaces of constantzeta are two-sheetedhyperboloids (Hilbert and Cohn-Vossen 1999, pp. 22-23). For every(x,y,z), there is a unique set of ellipsoidal coordinates. However,(xi,eta,zeta) specifies eight points symmetrically located inoctants.

Solving forx,y, andz gives

x^2=((a^2+xi)(a^2+eta)(a^2+zeta))/((b^2-a^2)(c^2-a^2))
(4)
y^2=((b^2+xi)(b^2+eta)(b^2+zeta))/((a^2-b^2)(c^2-b^2))
(5)
z^2=((c^2+xi)(c^2+eta)(c^2+zeta))/((a^2-c^2)(b^2-c^2)).
(6)

TheLaplacian is

 del ^2Psi=(eta-zeta)f(xi)partial/(partialxi)[f(xi)(partialPsi)/(partialxi)]  +(zeta-xi)f(eta)partial/(partialeta)[f(eta)(partialPsi)/(partialeta)]+(xi-eta)f(zeta)partial/(partialzeta)[f(zeta)(partialPsi)/(partialzeta)],
(7)

where

 f(x)=sqrt((x+a^2)(x+b^2)(x+c^2)).
(8)

Another definition is

(x^2)/(a^2-lambda)+(y^2)/(b^2-lambda)+(z^2)/(c^2-lambda)=1
(9)
(x^2)/(a^2-mu)+(y^2)/(b^2-mu)+(z^2)/(c^2-mu)=1
(10)
(x^2)/(a^2-nu)+(y^2)/(b^2-nu)+(z^2)/(c^2-nu)=1,
(11)

where

 lambda<c^2<mu<b^2<nu<a^2
(12)

(Arfken 1970, pp. 117-118). Byerly (1959, p. 251) uses a slightly different definition in which the Greek variables are replaced by their squares, anda=0. Equation (9) represents anellipsoid, (10) represents a one-sheetedhyperboloid, and (11) represents a two-sheetedhyperboloid.

In terms ofCartesian coordinates,

x^2=((a^2-lambda)(a^2-mu)(a^2-nu))/((a^2-b^2)(a^2-c^2))
(13)
y^2=((b^2-lambda)(b^2-mu)(b^2-nu))/((b^2-a^2)(b^2-c^2))
(14)
z^2=((c^2-lambda)(c^2-mu)(c^2-nu))/((c^2-a^2)(c^2-b^2)).
(15)

Thescale factors are

h_lambda=sqrt(((mu-lambda)(nu-lambda))/(4(a^2-lambda)(b^2-lambda)(c^2-lambda)))
(16)
h_mu=sqrt(((nu-mu)(lambda-mu))/(4(a^2-mu)(b^2-mu)(c^2-mu)))
(17)
h_nu=sqrt(((lambda-nu)(mu-nu))/(4(a^2-nu)(b^2-nu)(c^2-nu))).
(18)

TheLaplacian is

 del ^2=2(a^2b^2+a^2c^2+b^2c^2-2nu(a^2+b^2+c^2)+3nu^2)/((mu-nu)(nu-lambda))partial/(partialnu)+4((a^2-nu)(b^2-nu)(c^2-nu))/((mu-nu)(nu-lambda))(partial^2)/(partialnu^2)+2(a^2b^2+a^2c^2+b^2c^2-2mu(a^2+b^2+c^2)+3mu^2)/((nu-mu)(mu-lambda))partial/(partialmu)+4((a^2-mu)(b^2-mu)(c^2-mu))/((mu-lambda)(nu-mu))(partial^2)/(partialmu^2)+2(-(a^2b^2+a^2c^2+b^2c^2)+2lambda(a^2+b^2+c^2)-3lambda^2)/((mu-lambda)(nu-lambda))partial/(partiallambda)+4((a^2-lambda)(b^2-lambda)(c^2-lambda))/((mu-lambda)(nu-lambda))(partial^2)/(partiallambda^2).
(19)

Using thenotation of Byerly (1959, pp. 252-253),this can be reduced to

 del ^2=(mu^2-nu^2)(partial^2)/(partialalpha^2)+(lambda^2-nu^2)(partial^2)/(partialbeta^2)+(lambda^2-mu^2)(partial^2)/(partialgamma^2),
(20)

where

alpha=cint_c^lambda(dlambda)/(sqrt((lambda^2-b^2)(lambda^2-c^2)))
(21)
=F(b/c,pi/2)-F(b/c,sin^(-1)(c/lambda))
(22)
beta=cint_b^mu(dmu)/(sqrt((c^2-mu^2)(mu^2-b^2)))
(23)
=F[sqrt(1-(b^2)/(c^2)),sin^(-1)(sqrt((1-(b^2)/(mu^2))/(1-(b^2)/(c^2))))]
(24)
gamma=cint_0^nu(dnu)/(sqrt((b^2-nu^2)(c^2-nu^2)))
(25)
=F(b/c,sin^(-1)(nu/b)).
(26)

Here,F is anelliptic integral of the first kind. In terms ofalpha,beta, andgamma,

lambda=cdc(alpha,b/c)
(27)
mu=bnd(beta,sqrt(1-(b^2)/(c^2)))
(28)
nu=bsn(gamma,b/c),
(29)

wheredc,nd andsn areJacobi elliptic functions. TheHelmholtz differential equation is separable in confocal ellipsoidal coordinates.


See also

HelmholtzDifferential Equation--Confocal Ellipsoidal Coordinates

Explore with Wolfram|Alpha

References

Abramowitz, M. and Stegun, I. A. (Eds.). "Definition of Elliptical Coordinates." §21.1 inHandbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 752, 1972.Arfken, G. "Confocal Ellipsoidal Coordinates(xi_1,xi_2,xi_3)." §2.15 inMathematical Methods for Physicists, 2nd ed. New York: Academic Press, pp. 117-118, 1970.Byerly, W. E.An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, pp. 251-252, 1959.Hilbert, D. and Cohn-Vossen, S. "The Thread Construction of the Ellipsoid, and Confocal Quadrics." §4 inGeometry and the Imagination. New York: Chelsea, pp. 19-25, 1999.Moon, P. and Spencer, D. E. "Ellipsoidal Coordinates(eta,theta,lambda)." Table 1.10 inField Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions, 2nd ed. New York: Springer-Verlag, pp. 40-44, 1988.Morse, P. M. and Feshbach, H.Methods of Theoretical Physics, Part I. New York: McGraw-Hill, p. 663, 1953.

Referenced on Wolfram|Alpha

Confocal Ellipsoidal Coordinates

Cite this as:

Weisstein, Eric W. "Confocal Ellipsoidal Coordinates."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/ConfocalEllipsoidalCoordinates.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2026 Movatter.jp