Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Condon-Shortley Phase


The Condon-Shortley phase is the factor of(-1)^m that occurs in some definitions of thespherical harmonics (e.g., Arfken 1985, p. 682) to compensate for the lack of inclusion of this factor in the definition of theassociated Legendre polynomials (e.g., Arfken 1985, p. 669).

Using the Condon-Shortley convention in the definition of the spherical harmonic after omitting it in the definition ofP_l^m(costheta) gives

 Y_l^m(theta,phi)=(-1)^msqrt((2l+1)/(4pi)((l-m)!)/((l+m)!))P_l^m(costheta)e^(imphi)

(Arfken 1985, p. 692), whereas using the definition ofP_l^m(costheta) that already includes it gives

 Y_l^m(theta,phi)=sqrt((2l+1)/(4pi)((l-m)!)/((l+m)!))P_l^m(costheta)e^(imphi)

(e.g., theWolfram Language).

The Condon-Shortley phase is not necessary in the definition of thespherical harmonics, but including it simplifies the treatment of angular moment in quantum mechanics. In particular, they are a consequence of the ladder operatorsL_- andL_+ (Arfken 1985, p. 693).


See also

Associated LegendrePolynomial,Spherical Harmonic

Explore with Wolfram|Alpha

References

Arfken, G.Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 682 and 692, 1985.Condon, E. U. and Shortley, G.The Theory of Atomic Spectra. Cambridge, England: Cambridge University Press, 1951.Shore, B. W. and Menzel, D. H.Principles of Atomic Spectra. New York: Wiley, p. 158, 1968.

Referenced on Wolfram|Alpha

Condon-Shortley Phase

Cite this as:

Weisstein, Eric W. "Condon-Shortley Phase."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/Condon-ShortleyPhase.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2026 Movatter.jp