Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Circumsphere


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

The circumsphere of given set of points, commonly the vertices of a solid, is asphere that passes through all the points. A circumsphere does not always exist, but when it does, itsradiusR is called thecircumradius and its center thecircumcenter. The circumsphere is the 3-dimensional generalization of thecircumcircle.

Circumsphere

The figures above depict the circumspheres of thePlatonicsolids.

The circumsphere is implemented in theWolfram Language asCircumsphere[pts], wherepts is a list of points, orCircumsphere[poly], wherepoly is aPolygon (giving a two-dimensionalcircumcircle) orPolyhedron (giving a three-dimensional circumsphere) object.

By analogy with the equation of thecircumcircle, the equation for the circumsphere of thetetrahedron withpolygon vertices(x_i,y_i,z_i) fori=1, ..., 4 is

 |x^2+y^2+z^2 x y z 1; x_1^2+y_1^2+z_1^2 x_1 y_1 z_1 1; x_2^2+y_2^2+z_2^2 x_2 y_2 z_2 1; x_3^2+y_3^2+z_3^2 x_3 y_3 z_3 1; x_4^2+y_4^2+z_4^2 x_4 y_4 z_4 1|=0.
(1)

Expanding thedeterminant,

 a(x^2+y^2+z^2)-(D_xx+D_yy+D_zz)+c=0,
(2)

where

 a=|x_1 y_1 z_1 1; x_2 y_2 z_2 1; x_3 y_3 z_3 1; x_4 y_4 z_4 1|,
(3)

D_x is the determinant obtained from the matrix

 D=[x_1^2+y_1^2+z_1^2 x_1 y_1 z_1 1; x_2^2+y_2^2+z_2^2 x_2 y_2 z_2 1; x_3^2+y_3^2+z_3^2 x_3 y_3 z_3 1; x_4^2+y_4^2+z_4^2 x_4 y_4 z_4 1]
(4)

by discarding thex_i column (and taking a plus sign) and similarly forD_y (this time taking the minus sign) andD_z (again taking the plus sign)

D_x=+|x_1^2+y_1^2+z_1^2 y_1 z_1 1; x_2^2+y_2^2+z_2^2 y_2 z_2 1; x_3^2+y_3^2+z_3^2 y_3 z_3 1; x_4^2+y_4^2+z_4^2 y_4 z_4 1|
(5)
D_y=-|x_1^2+y_1^2+z_1^2 x_1 z_1 1; x_2^2+y_2^2+z_2^2 x_2 z_2 1; x_3^2+y_3^2+z_3^2 x_3 z_3 1; x_4^2+y_4^2+z_4^2 x_4 z_4 1|
(6)
D_z=+|x_1^2+y_1^2+z_1^2 x_1 y_1 1; x_2^2+y_2^2+z_2^2 x_2 y_2 1; x_3^2+y_3^2+z_3^2 x_3 y_3 1; x_4^2+y_4^2+z_4^2 x_4 y_4 1|
(7)

andc is given by

 c=|x_1^2+y_1^2+z_1^2 x_1 y_1 z_1; x_2^2+y_2^2+z_2^2 x_2 y_2 z_2; x_3^2+y_3^2+z_3^2 x_3 y_3 z_3; x_4^2+y_4^2+z_4^2 x_4 y_4 z_4|.
(8)

Completing the square gives

 a(x-(D_x)/(2a))^2+a(y-(D_y)/(2a))^2+a(z-(D_z)/(2a))^2-(D_x^2+D_y^2+D_z^2)/(4a)+c=0
(9)

which is asphereof the form

 (x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2,
(10)

withcircumcenter

x_0=(D_x)/(2a)
(11)
y_0=(D_y)/(2a)
(12)
z_0=(D_z)/(2a)
(13)

andcircumradius

 r=(sqrt(D_x^2+D_y^2+D_z^2-4ac))/(2|a|).
(14)

See also

Circumcenter,Circumcircle,Circumradius,Insphere,Midsphere

Explore with Wolfram|Alpha

Cite this as:

Weisstein, Eric W. "Circumsphere." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/Circumsphere.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp