Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Chebyshev Functions


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook

The two functionstheta(x) andpsi(x) defined below are known as the Chebyshev functions.

ChebyshevFunctionTheta

The functiontheta(x) is defined by

theta(x)=sum_(k=1)^(pi(x))lnp_k
(1)
=ln[product_(k=1)^(pi(x))p_k]
(2)
=lnx#
(3)

(Hardy and Wright 1979, p. 340), wherep_k is thekthprime,pi(x) is theprime counting function, andx# is theprimorial. This function has the limit

 lim_(x->infty)x/(theta(x))=1
(4)

and the asymptotic behavior

 theta(n)∼n
(5)

(Bach and Shallit 1996; Hardy 1999, p. 28; Havil 2003, p. 184). The notationtheta(n) is also commonly used for this function (Hardy 1999, p. 27).

ChebyshevFunctionPsi

The related functionpsi(x) is defined by

psi(x)=sum_(p^nu<=x)lnp
(6)
=sum_(n<=x)Lambda(n),
(7)

whereLambda(n) is theMangoldt function (Hardy and Wright 1979, p. 340; Edwards 2001, p. 51). Here, the sum runs over all primesp and positive integersnu such thatp^nu<=x, and therefore potentially includes some primes multiple times. A simple and beautiful formula forpsi(x) is given by

 psi(x)=ln[LCM(1,2,3,...,|_x_|)],
(8)

i.e., the logarithm of theleast common multiple of the numbers from 1 ton (correcting Havil 2003, p. 184). The values ofLCM(1,2,...,n) forn=1, 2, ... are 1, 2, 6, 12, 60, 60, 420, 840, 2520, 2520, ... (OEISA003418; Selmer 1976). For example,

 psi(10)=ln2520=3ln2+2ln3+ln5+ln7.
(9)

The function also has asymptotic behavior

 psi(x)∼x
(10)

(Hardy 1999, p. 27; Havil 2003, p. 184).

The two functions are related by

 psi(x)=sum_(k=1)^(|_log_2x_|)theta(x^(1/k))
(11)

(Havil 2003, p. 184).

Chebyshev showed thatpi(x)/(x/lnx),theta(x)/x, andpsi(x)/x∼1 (Ingham 1995; Havil 2003, pp. 184-185).

According to Hardy (1999, p. 27), the functionstheta(n) andpsi(n) are in some ways more natural than theprime counting functionpi(x) since they deal with multiplication of primes instead of the counting of them.


See also

Mangoldt Function,Prime Counting Function,Prime Number Theorem,Primorial

Explore with Wolfram|Alpha

References

Bach, E. and Shallit, J.Algorithmic Number Theory, Vol. 1: Efficient Algorithms. Cambridge, MA: MIT Press, pp. 206 and 233, 1996.Chebyshev, P. L. "Mémoir sur les nombres premiers."J. math. pures appl.17, 366-390, 1852.Costa Pereira, N. "Estimates for the Chebyshev Functionpsi(x)-theta(x)."Math. Comput.44, 211-221, 1985.Costa Pereira, N. "Corrigendum: Estimates for the Chebyshev Functionpsi(x)-theta(x)."Math. Comput.48, 447, 1987.Costa Pereira, N. "Elementary Estimates for the Chebyshev Functionpsi(x) and for the Möbius FunctionM(x)."Acta Arith.52, 307-337, 1989.Dusart, P. "Inégalités explicites pourpsi(X),theta(X),pi(X) et les nombres premiers."C. R. Math. Rep. Acad. Sci. Canad21, 53-59, 1999.Edwards, H. M.Riemann's Zeta Function. New York: Dover, 2001.Hardy, G. H.Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 27, 1999.Hardy, G. H. and Wright, E. M. "The Functionstheta(x) andpsi(x)" and "Proof thattheta(x) andpsi(x) are of Orderx." §22.1-22.2 inAn Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 340-342, 1979.Havil, J. "Enter Chebyshev with Some Good Ideas." §15.11 inGamma: Exploring Euler's Constant. Princeton, NJ: Princeton University Press, pp. 183-186, 2003.Ingham, A. E.The Distribution of Prime Numbers. Cambridge, England: Cambridge University Press, 1995.Nagell, T.Introduction to Number Theory. New York: Wiley, p. 60, 1951.Panaitopol, L. "Several Approximations ofpi(x)."Math. Ineq. Appl.2, 317-324, 1999.Robin, G. "Estimation de la foction de Tchebycheftheta sur lekième nombre premier er grandes valeurs de la fonctionsomega(n), nombre de diviseurs premiers den."Acta Arith.42, 367-389, 1983.Rosser, J. B. and Schoenfeld, L. "Sharper Bounds for Chebyshev Functionstheta(x) andpsi(x)."Math. Comput.29, 243-269, 1975.Schoenfeld, L. "Sharper Bounds for Chebyshev Functionstheta(x) andpsi(x), II."Math. Comput.30, 337-360, 1976.Selmer, E. S. "On the Number of Prime Divisors of a Binomial Coefficient."Math. Scand.39, 271-281, 1976.Sloane, N. J. A. SequenceA003418/M1590 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Chebyshev Functions

Cite this as:

Weisstein, Eric W. "Chebyshev Functions."FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/ChebyshevFunctions.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2025 Movatter.jp