Movatterモバイル変換


[0]ホーム

URL:


TOPICS
SearchClose
Search

Brocard Angle


DOWNLOAD Mathematica NotebookDownloadWolfram Notebook
BrocardPoints

Define the firstBrocard point as the interior pointOmega of atriangle for which theangles∠OmegaAB,∠OmegaBC, and∠OmegaCA are equal to an angleomega. Similarly, define the secondBrocard point as the interior pointOmega^' for which theangles∠Omega^'AC,∠Omega^'CB, and∠Omega^'BA are equal to an angleomega^'. Thenomega=omega^', and this angle is called the Brocard angle.

The Brocard angleomega of atriangleDeltaABC is given by the formulas

cotomega=cotA+cotB+cotC
(1)
=(a^2+b^2+c^2)/(4Delta)
(2)
=(1+cosAcosBcosC)/(sinAsinBsinC)
(3)
=(sin^2A+sin^2B+sin^2C)/(2sinAsinBsinC)
(4)
=(asinA+bsinB+csinC)/(acosA+bcosB+ccosC)
(5)
csc^2omega=csc^2A+csc^2B+csc^2C
(6)
sinomega=(2Delta)/(sqrt(a^2b^2+b^2c^2+c^2a^2))
(7)
sin^2omega=((-a+b+c)(a-b+c)(a+b-c)(a+b+c))/(4(a^2b^2+b^2c^2+c^2a^2))
(8)
sin^3omega=sin(A-omega)sin(B-omega)sin(C-omega)
(9)
tanomega=(sinAsinBsinC)/(1+cosAcosBcosC),
(10)

whereDelta is thetriangle area,A,B, andC areangles, anda,b, andc are the side lengths (Johnson 1929). Equation (8) is due to Neuberg (Tucker 1883).

Gallatly (1913, p. 96) defines the quantitye as

 e^2=1-4sin^2omega.
(11)

If ananglealpha of atriangle is given, the maximum possible Brocard angle (and therefore minimum possible value ofcotomega) is given by

 cotomega=3/2tan(1/2alpha)+1/2cot(1/2alpha)
(12)

(Johnson 1929, p. 289). Ifomega is specified, then the largest possible valuealpha_(max) and minimum possible valuealpha_(min) of any possible triangle having Brocard angleomega are given by

cot(1/2alpha_(max))=cotomega-sqrt(cot^2omega-3)
(13)
cot(1/2alpha_(min))=cotomega+sqrt(cot^2omega-3),
(14)

where the square rooted quantity is the radius of the correspondingNeuberg circle (Johnson 1929, p. 288). The maximum possible Brocard angle (and therefore minimum possible value ofcotomega) for any triangle is30 degrees (Honsberger 1995, pp. 102-103), so

 omega<=1/6pi.
(15)

TheAbi-Khuzam inequality states that

 sinAsinBsinC<=((3sqrt(3))/(2pi))^3ABC
(16)

(Abi-Khuzam 1974, Le Lionnais 1983), which can be used to prove theYffconjecture that

 8omega^3<ABC
(17)

(Abi-Khuzam 1974). Abi-Khuzam also proved that

 omega^3<=(A-omega)(B-omega)(C-omega).
(18)

Interestingly, (◇) is equivalent to

 2omega<=(A+B+C)/3
(19)

and (◇) is equivalent to

 2omega<=RadicalBox[{A, B, C}, 3],
(20)

which are inequalities about the arithmetic and geometric mean, respectively.


See also

Abi-Khuzam Inequality,Brocard Circle,Brocard Line,Brocard Triangles,Equi-Brocard Center,Fermat Points,Neuberg Circles,Yff Conjecture

Explore with Wolfram|Alpha

References

Abi-Khuzam, F. "Proof of Yff's Conjecture on the Brocard Angle of a Triangle."Elem. Math.29, 141-142, 1974.Abi-Khuzam, F. F. and Boghossian, A. B. "Some Recent Geometric Inequalities."Amer. Math. Monthly96, 576-589, 1989.Casey, J.A Sequel to the First Six Books of the Elements of Euclid, Containing an Easy Introduction to Modern Geometry with Numerous Examples, 5th ed., rev. enl. Dublin: Hodges, Figgis, & Co., p. 172, 1888.Coolidge, J. L.A Treatise on the Geometry of the Circle and Sphere. New York: Chelsea, p. 61, 1971.Emmerich, A.Die Brocardschen Gebilde und ihre Beziehungen zu den verwandten merkwürdigen Punkten und Kreisen des Dreiecks. Berlin: Reimer, 1891.Gallatly, W.The Modern Geometry of the Triangle, 2nd ed. London: Hodgson, p. 95, 1913.Honsberger, R. "The Brocard Angle." §10.2 inEpisodes in Nineteenth and Twentieth Century Euclidean Geometry. Washington, DC: Math. Assoc. Amer., pp. 101-106, 1995.Johnson, R. A.Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Boston, MA: Houghton Mifflin, pp. 263-286 and 289-294, 1929.Lachlan, R.An Elementary Treatise on Modern Pure Geometry. London: Macmillian, pp. 65-66, 1893.Le Lionnais, F.Les nombres remarquables. Paris: Hermann, p. 28, 1983.Tucker, R. "The 'Triplicate Ratio' Circle."Quart. J. Pure Appl. Math.19, 342-348, 1883.

Referenced on Wolfram|Alpha

Brocard Angle

Cite this as:

Weisstein, Eric W. "Brocard Angle." FromMathWorld--A Wolfram Resource.https://mathworld.wolfram.com/BrocardAngle.html

Subject classifications

Created, developed and nurtured by Eric Weisstein at Wolfram Research

[8]ページ先頭

©2009-2026 Movatter.jp