Movatterモバイル変換


[0]ホーム

URL:


LLVM 20.0.0git
APInt.h
Go to the documentation of this file.
1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include "llvm/Support/float128.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <optional>
25#include <utility>
26
27namespacellvm {
28classFoldingSetNodeID;
29classStringRef;
30classhash_code;
31classraw_ostream;
32structAlign;
33classDynamicAPInt;
34
35template <typename T>classSmallVectorImpl;
36template <typename T>classArrayRef;
37template <typename T,typename Enable>structDenseMapInfo;
38
39classAPInt;
40
41inline APIntoperator-(APInt);
42
43//===----------------------------------------------------------------------===//
44// APInt Class
45//===----------------------------------------------------------------------===//
46
47/// Class for arbitrary precision integers.
48///
49/// APInt is a functional replacement for common case unsigned integer type like
50/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
51/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
52/// than 64-bits of precision. APInt provides a variety of arithmetic operators
53/// and methods to manipulate integer values of any bit-width. It supports both
54/// the typical integer arithmetic and comparison operations as well as bitwise
55/// manipulation.
56///
57/// The class has several invariants worth noting:
58/// * All bit, byte, and word positions are zero-based.
59/// * Once the bit width is set, it doesn't change except by the Truncate,
60/// SignExtend, or ZeroExtend operations.
61/// * All binary operators must be on APInt instances of the same bit width.
62/// Attempting to use these operators on instances with different bit
63/// widths will yield an assertion.
64/// * The value is stored canonically as an unsigned value. For operations
65/// where it makes a difference, there are both signed and unsigned variants
66/// of the operation. For example, sdiv and udiv. However, because the bit
67/// widths must be the same, operations such as Mul and Add produce the same
68/// results regardless of whether the values are interpreted as signed or
69/// not.
70/// * In general, the class tries to follow the style of computation that LLVM
71/// uses in its IR. This simplifies its use for LLVM.
72/// * APInt supports zero-bit-width values, but operations that require bits
73/// are not defined on it (e.g. you cannot ask for the sign of a zero-bit
74/// integer). This means that operations like zero extension and logical
75/// shifts are defined, but sign extension and ashr is not. Zero bit values
76/// compare and hash equal to themselves, and countLeadingZeros returns 0.
77///
78class[[nodiscard]]APInt {
79public:
80typedefuint64_tWordType;
81
82 /// Byte size of a word.
83staticconstexprunsigned APINT_WORD_SIZE =sizeof(WordType);
84
85 /// Bits in a word.
86staticconstexprunsigned APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT;
87
88enum classRounding {
89 DOWN,
90 TOWARD_ZERO,
91 UP,
92 };
93
94staticconstexprWordType WORDTYPE_MAX =~WordType(0);
95
96 /// \name Constructors
97 /// @{
98
99 /// Create a new APInt of numBits width, initialized as val.
100 ///
101 /// If isSigned is true then val is treated as if it were a signed value
102 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
103 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
104 /// the range of val are zero filled).
105 ///
106 /// \param numBits the bit width of the constructed APInt
107 /// \param val the initial value of the APInt
108 /// \param isSigned how to treat signedness of val
109 /// \param implicitTrunc allow implicit truncation of non-zero/sign bits of
110 /// val beyond the range of numBits
111APInt(unsigned numBits,uint64_t val,boolisSigned =false,
112bool implicitTrunc =false)
113 :BitWidth(numBits) {
114if (!implicitTrunc) {
115if (isSigned) {
116if (BitWidth == 0) {
117assert((val == 0 || val ==uint64_t(-1)) &&
118"Value must be 0 or -1 for signed 0-bit APInt");
119 }else {
120assert(llvm::isIntN(BitWidth, val) &&
121"Value is not an N-bit signed value");
122 }
123 }else {
124if (BitWidth == 0) {
125assert(val == 0 &&"Value must be zero for unsigned 0-bit APInt");
126 }else {
127assert(llvm::isUIntN(BitWidth, val) &&
128"Value is not an N-bit unsigned value");
129 }
130 }
131 }
132if (isSingleWord()) {
133 U.VAL = val;
134if (implicitTrunc ||isSigned)
135clearUnusedBits();
136 }else {
137 initSlowCase(val,isSigned);
138 }
139 }
140
141 /// Construct an APInt of numBits width, initialized as bigVal[].
142 ///
143 /// Note that bigVal.size() can be smaller or larger than the corresponding
144 /// bit width but any extraneous bits will be dropped.
145 ///
146 /// \param numBits the bit width of the constructed APInt
147 /// \param bigVal a sequence of words to form the initial value of the APInt
148APInt(unsigned numBits,ArrayRef<uint64_t> bigVal);
149
150 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
151 /// deprecated because this constructor is prone to ambiguity with the
152 /// APInt(unsigned, uint64_t, bool) constructor.
153 ///
154 /// If this overload is ever deleted, care should be taken to prevent calls
155 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
156 /// constructor.
157APInt(unsigned numBits,unsigned numWords,constuint64_t bigVal[]);
158
159 /// Construct an APInt from a string representation.
160 ///
161 /// This constructor interprets the string \p str in the given radix. The
162 /// interpretation stops when the first character that is not suitable for the
163 /// radix is encountered, or the end of the string. Acceptable radix values
164 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
165 /// string to require more bits than numBits.
166 ///
167 /// \param numBits the bit width of the constructed APInt
168 /// \param str the string to be interpreted
169 /// \param radix the radix to use for the conversion
170APInt(unsigned numBits,StringRef str,uint8_t radix);
171
172 /// Default constructor that creates an APInt with a 1-bit zero value.
173explicitAPInt() { U.VAL = 0; }
174
175 /// Copy Constructor.
176APInt(constAPInt &that) :BitWidth(that.BitWidth) {
177if (isSingleWord())
178 U.VAL = that.U.VAL;
179else
180 initSlowCase(that);
181 }
182
183 /// Move Constructor.
184APInt(APInt &&that) :BitWidth(that.BitWidth) {
185 memcpy(&U, &that.U,sizeof(U));
186 that.BitWidth = 0;
187 }
188
189 /// Destructor.
190~APInt() {
191if (needsCleanup())
192delete[] U.pVal;
193 }
194
195 /// @}
196 /// \name Value Generators
197 /// @{
198
199 /// Get the '0' value for the specified bit-width.
200staticAPIntgetZero(unsigned numBits) {returnAPInt(numBits, 0); }
201
202 /// Return an APInt zero bits wide.
203staticAPIntgetZeroWidth() {return getZero(0); }
204
205 /// Gets maximum unsigned value of APInt for specific bit width.
206staticAPIntgetMaxValue(unsigned numBits) {return getAllOnes(numBits); }
207
208 /// Gets maximum signed value of APInt for a specific bit width.
209staticAPIntgetSignedMaxValue(unsigned numBits) {
210APInt API = getAllOnes(numBits);
211 API.clearBit(numBits - 1);
212return API;
213 }
214
215 /// Gets minimum unsigned value of APInt for a specific bit width.
216staticAPIntgetMinValue(unsigned numBits) {returnAPInt(numBits, 0); }
217
218 /// Gets minimum signed value of APInt for a specific bit width.
219staticAPIntgetSignedMinValue(unsigned numBits) {
220APInt API(numBits, 0);
221 API.setBit(numBits - 1);
222return API;
223 }
224
225 /// Get the SignMask for a specific bit width.
226 ///
227 /// This is just a wrapper function of getSignedMinValue(), and it helps code
228 /// readability when we want to get a SignMask.
229staticAPIntgetSignMask(unsignedBitWidth) {
230return getSignedMinValue(BitWidth);
231 }
232
233 /// Return an APInt of a specified width with all bits set.
234staticAPIntgetAllOnes(unsigned numBits) {
235returnAPInt(numBits, WORDTYPE_MAX,true);
236 }
237
238 /// Return an APInt with exactly one bit set in the result.
239staticAPIntgetOneBitSet(unsigned numBits,unsigned BitNo) {
240APInt Res(numBits, 0);
241 Res.setBit(BitNo);
242return Res;
243 }
244
245 /// Get a value with a block of bits set.
246 ///
247 /// Constructs an APInt value that has a contiguous range of bits set. The
248 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
249 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
250 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
251 /// \p hiBit.
252 ///
253 /// \param numBits the intended bit width of the result
254 /// \param loBit the index of the lowest bit set.
255 /// \param hiBit the index of the highest bit set.
256 ///
257 /// \returns An APInt value with the requested bits set.
258staticAPIntgetBitsSet(unsigned numBits,unsigned loBit,unsigned hiBit) {
259APInt Res(numBits, 0);
260 Res.setBits(loBit, hiBit);
261return Res;
262 }
263
264 /// Wrap version of getBitsSet.
265 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
266 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
267 /// with parameters (32, 28, 4), you would get 0xF000000F.
268 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
269 /// set.
270staticAPIntgetBitsSetWithWrap(unsigned numBits,unsigned loBit,
271unsigned hiBit) {
272APInt Res(numBits, 0);
273 Res.setBitsWithWrap(loBit, hiBit);
274return Res;
275 }
276
277 /// Constructs an APInt value that has a contiguous range of bits set. The
278 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
279 /// bits will be zero. For example, with parameters(32, 12) you would get
280 /// 0xFFFFF000.
281 ///
282 /// \param numBits the intended bit width of the result
283 /// \param loBit the index of the lowest bit to set.
284 ///
285 /// \returns An APInt value with the requested bits set.
286staticAPIntgetBitsSetFrom(unsigned numBits,unsigned loBit) {
287APInt Res(numBits, 0);
288 Res.setBitsFrom(loBit);
289return Res;
290 }
291
292 /// Constructs an APInt value that has the top hiBitsSet bits set.
293 ///
294 /// \param numBits the bitwidth of the result
295 /// \param hiBitsSet the number of high-order bits set in the result.
296staticAPIntgetHighBitsSet(unsigned numBits,unsigned hiBitsSet) {
297APInt Res(numBits, 0);
298 Res.setHighBits(hiBitsSet);
299return Res;
300 }
301
302 /// Constructs an APInt value that has the bottom loBitsSet bits set.
303 ///
304 /// \param numBits the bitwidth of the result
305 /// \param loBitsSet the number of low-order bits set in the result.
306staticAPIntgetLowBitsSet(unsigned numBits,unsigned loBitsSet) {
307APInt Res(numBits, 0);
308 Res.setLowBits(loBitsSet);
309return Res;
310 }
311
312 /// Return a value containing V broadcasted over NewLen bits.
313staticAPInt getSplat(unsigned NewLen,constAPInt &V);
314
315 /// @}
316 /// \name Value Tests
317 /// @{
318
319 /// Determine if this APInt just has one word to store value.
320 ///
321 /// \returns true if the number of bits <= 64, false otherwise.
322boolisSingleWord() const{returnBitWidth <= APINT_BITS_PER_WORD; }
323
324 /// Determine sign of this APInt.
325 ///
326 /// This tests the high bit of this APInt to determine if it is set.
327 ///
328 /// \returns true if this APInt is negative, false otherwise
329boolisNegative() const{return (*this)[BitWidth - 1]; }
330
331 /// Determine if this APInt Value is non-negative (>= 0)
332 ///
333 /// This tests the high bit of the APInt to determine if it is unset.
334boolisNonNegative() const{return !isNegative(); }
335
336 /// Determine if sign bit of this APInt is set.
337 ///
338 /// This tests the high bit of this APInt to determine if it is set.
339 ///
340 /// \returns true if this APInt has its sign bit set, false otherwise.
341boolisSignBitSet() const{return (*this)[BitWidth - 1]; }
342
343 /// Determine if sign bit of this APInt is clear.
344 ///
345 /// This tests the high bit of this APInt to determine if it is clear.
346 ///
347 /// \returns true if this APInt has its sign bit clear, false otherwise.
348boolisSignBitClear() const{return !isSignBitSet(); }
349
350 /// Determine if this APInt Value is positive.
351 ///
352 /// This tests if the value of this APInt is positive (> 0). Note
353 /// that 0 is not a positive value.
354 ///
355 /// \returns true if this APInt is positive.
356boolisStrictlyPositive() const{return isNonNegative() && !isZero(); }
357
358 /// Determine if this APInt Value is non-positive (<= 0).
359 ///
360 /// \returns true if this APInt is non-positive.
361boolisNonPositive() const{return !isStrictlyPositive(); }
362
363 /// Determine if this APInt Value only has the specified bit set.
364 ///
365 /// \returns true if this APInt only has the specified bit set.
366boolisOneBitSet(unsigned BitNo) const{
367return (*this)[BitNo] &&popcount() == 1;
368 }
369
370 /// Determine if all bits are set. This is true for zero-width values.
371boolisAllOnes() const{
372if (BitWidth == 0)
373returntrue;
374if (isSingleWord())
375return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD -BitWidth);
376return countTrailingOnesSlowCase() ==BitWidth;
377 }
378
379 /// Determine if this value is zero, i.e. all bits are clear.
380boolisZero() const{
381if (isSingleWord())
382return U.VAL == 0;
383return countLeadingZerosSlowCase() ==BitWidth;
384 }
385
386 /// Determine if this is a value of 1.
387 ///
388 /// This checks to see if the value of this APInt is one.
389boolisOne() const{
390if (isSingleWord())
391return U.VAL == 1;
392return countLeadingZerosSlowCase() ==BitWidth - 1;
393 }
394
395 /// Determine if this is the largest unsigned value.
396 ///
397 /// This checks to see if the value of this APInt is the maximum unsigned
398 /// value for the APInt's bit width.
399boolisMaxValue() const{return isAllOnes(); }
400
401 /// Determine if this is the largest signed value.
402 ///
403 /// This checks to see if the value of this APInt is the maximum signed
404 /// value for the APInt's bit width.
405boolisMaxSignedValue() const{
406if (isSingleWord()) {
407assert(BitWidth &&"zero width values not allowed");
408return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
409 }
410return !isNegative() && countTrailingOnesSlowCase() ==BitWidth - 1;
411 }
412
413 /// Determine if this is the smallest unsigned value.
414 ///
415 /// This checks to see if the value of this APInt is the minimum unsigned
416 /// value for the APInt's bit width.
417boolisMinValue() const{returnisZero(); }
418
419 /// Determine if this is the smallest signed value.
420 ///
421 /// This checks to see if the value of this APInt is the minimum signed
422 /// value for the APInt's bit width.
423boolisMinSignedValue() const{
424if (isSingleWord()) {
425assert(BitWidth &&"zero width values not allowed");
426return U.VAL == (WordType(1) << (BitWidth - 1));
427 }
428return isNegative() && countTrailingZerosSlowCase() ==BitWidth - 1;
429 }
430
431 /// Check if this APInt has an N-bits unsigned integer value.
432boolisIntN(unsignedN) const{return getActiveBits() <=N; }
433
434 /// Check if this APInt has an N-bits signed integer value.
435boolisSignedIntN(unsignedN) const{return getSignificantBits() <=N; }
436
437 /// Check if this APInt's value is a power of two greater than zero.
438 ///
439 /// \returns true if the argument APInt value is a power of two > 0.
440boolisPowerOf2() const{
441if (isSingleWord()) {
442assert(BitWidth &&"zero width values not allowed");
443returnisPowerOf2_64(U.VAL);
444 }
445return countPopulationSlowCase() == 1;
446 }
447
448 /// Check if this APInt's negated value is a power of two greater than zero.
449boolisNegatedPowerOf2() const{
450assert(BitWidth &&"zero width values not allowed");
451if (isNonNegative())
452returnfalse;
453// NegatedPowerOf2 - shifted mask in the top bits.
454unsigned LO =countl_one();
455unsigned TZ =countr_zero();
456return (LO + TZ) ==BitWidth;
457 }
458
459 /// Checks if this APInt -interpreted as an address- is aligned to the
460 /// provided value.
461boolisAligned(AlignA)const;
462
463 /// Check if the APInt's value is returned by getSignMask.
464 ///
465 /// \returns true if this is the value returned by getSignMask.
466boolisSignMask() const{return isMinSignedValue(); }
467
468 /// Convert APInt to a boolean value.
469 ///
470 /// This converts the APInt to a boolean value as a test against zero.
471boolgetBoolValue() const{return !isZero(); }
472
473 /// If this value is smaller than the specified limit, return it, otherwise
474 /// return the limit value. This causes the value to saturate to the limit.
475uint64_tgetLimitedValue(uint64_t Limit =UINT64_MAX) const{
476return ugt(Limit) ? Limit : getZExtValue();
477 }
478
479 /// Check if the APInt consists of a repeated bit pattern.
480 ///
481 /// e.g. 0x01010101 satisfies isSplat(8).
482 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
483 /// width without remainder.
484boolisSplat(unsigned SplatSizeInBits)const;
485
486 /// \returns true if this APInt value is a sequence of \param numBits ones
487 /// starting at the least significant bit with the remainder zero.
488boolisMask(unsigned numBits) const{
489assert(numBits != 0 &&"numBits must be non-zero");
490assert(numBits <=BitWidth &&"numBits out of range");
491if (isSingleWord())
492return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
493unsigned Ones = countTrailingOnesSlowCase();
494return (numBits == Ones) &&
495 ((Ones + countLeadingZerosSlowCase()) ==BitWidth);
496 }
497
498 /// \returns true if this APInt is a non-empty sequence of ones starting at
499 /// the least significant bit with the remainder zero.
500 /// Ex. isMask(0x0000FFFFU) == true.
501boolisMask() const{
502if (isSingleWord())
503returnisMask_64(U.VAL);
504unsigned Ones = countTrailingOnesSlowCase();
505return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) ==BitWidth);
506 }
507
508 /// Return true if this APInt value contains a non-empty sequence of ones with
509 /// the remainder zero.
510boolisShiftedMask() const{
511if (isSingleWord())
512returnisShiftedMask_64(U.VAL);
513unsigned Ones = countPopulationSlowCase();
514unsigned LeadZ = countLeadingZerosSlowCase();
515return (Ones + LeadZ + countTrailingZerosSlowCase()) ==BitWidth;
516 }
517
518 /// Return true if this APInt value contains a non-empty sequence of ones with
519 /// the remainder zero. If true, \p MaskIdx will specify the index of the
520 /// lowest set bit and \p MaskLen is updated to specify the length of the
521 /// mask, else neither are updated.
522boolisShiftedMask(unsigned &MaskIdx,unsigned &MaskLen) const{
523if (isSingleWord())
524returnisShiftedMask_64(U.VAL, MaskIdx, MaskLen);
525unsigned Ones = countPopulationSlowCase();
526unsigned LeadZ = countLeadingZerosSlowCase();
527unsigned TrailZ = countTrailingZerosSlowCase();
528if ((Ones + LeadZ + TrailZ) !=BitWidth)
529returnfalse;
530 MaskLen = Ones;
531 MaskIdx = TrailZ;
532returntrue;
533 }
534
535 /// Compute an APInt containing numBits highbits from this APInt.
536 ///
537 /// Get an APInt with the same BitWidth as this APInt, just zero mask the low
538 /// bits and right shift to the least significant bit.
539 ///
540 /// \returns the high "numBits" bits of this APInt.
541APInt getHiBits(unsigned numBits)const;
542
543 /// Compute an APInt containing numBits lowbits from this APInt.
544 ///
545 /// Get an APInt with the same BitWidth as this APInt, just zero mask the high
546 /// bits.
547 ///
548 /// \returns the low "numBits" bits of this APInt.
549APInt getLoBits(unsigned numBits)const;
550
551 /// Determine if two APInts have the same value, after zero-extending
552 /// one of them (if needed!) to ensure that the bit-widths match.
553staticboolisSameValue(constAPInt &I1,constAPInt &I2) {
554if (I1.getBitWidth() == I2.getBitWidth())
555return I1 == I2;
556
557if (I1.getBitWidth() > I2.getBitWidth())
558return I1 == I2.zext(I1.getBitWidth());
559
560return I1.zext(I2.getBitWidth()) == I2;
561 }
562
563 /// Overload to compute a hash_code for an APInt value.
564friendhash_codehash_value(constAPInt &Arg);
565
566 /// This function returns a pointer to the internal storage of the APInt.
567 /// This is useful for writing out the APInt in binary form without any
568 /// conversions.
569constuint64_t *getRawData() const{
570if (isSingleWord())
571return &U.VAL;
572return &U.pVal[0];
573 }
574
575 /// @}
576 /// \name Unary Operators
577 /// @{
578
579 /// Postfix increment operator. Increment *this by 1.
580 ///
581 /// \returns a new APInt value representing the original value of *this.
582APIntoperator++(int) {
583APInt API(*this);
584 ++(*this);
585return API;
586 }
587
588 /// Prefix increment operator.
589 ///
590 /// \returns *this incremented by one
591APInt &operator++();
592
593 /// Postfix decrement operator. Decrement *this by 1.
594 ///
595 /// \returns a new APInt value representing the original value of *this.
596APIntoperator--(int) {
597APInt API(*this);
598 --(*this);
599return API;
600 }
601
602 /// Prefix decrement operator.
603 ///
604 /// \returns *this decremented by one.
605APInt &operator--();
606
607 /// Logical negation operation on this APInt returns true if zero, like normal
608 /// integers.
609booloperator!() const{returnisZero(); }
610
611 /// @}
612 /// \name Assignment Operators
613 /// @{
614
615 /// Copy assignment operator.
616 ///
617 /// \returns *this after assignment of RHS.
618APInt &operator=(constAPInt &RHS) {
619// The common case (both source or dest being inline) doesn't require
620// allocation or deallocation.
621if (isSingleWord() &&RHS.isSingleWord()) {
622 U.VAL =RHS.U.VAL;
623BitWidth =RHS.BitWidth;
624return *this;
625 }
626
627 assignSlowCase(RHS);
628return *this;
629 }
630
631 /// Move assignment operator.
632APInt &operator=(APInt &&that) {
633#ifdef EXPENSIVE_CHECKS
634// Some std::shuffle implementations still do self-assignment.
635if (this == &that)
636return *this;
637#endif
638assert(this != &that &&"Self-move not supported");
639if (!isSingleWord())
640delete[] U.pVal;
641
642// Use memcpy so that type based alias analysis sees both VAL and pVal
643// as modified.
644 memcpy(&U, &that.U,sizeof(U));
645
646BitWidth = that.BitWidth;
647 that.BitWidth = 0;
648return *this;
649 }
650
651 /// Assignment operator.
652 ///
653 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
654 /// the bit width, the excess bits are truncated. If the bit width is larger
655 /// than 64, the value is zero filled in the unspecified high order bits.
656 ///
657 /// \returns *this after assignment of RHS value.
658APInt &operator=(uint64_tRHS) {
659if (isSingleWord()) {
660 U.VAL =RHS;
661returnclearUnusedBits();
662 }
663 U.pVal[0] =RHS;
664 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
665return *this;
666 }
667
668 /// Bitwise AND assignment operator.
669 ///
670 /// Performs a bitwise AND operation on this APInt and RHS. The result is
671 /// assigned to *this.
672 ///
673 /// \returns *this after ANDing with RHS.
674APInt &operator&=(constAPInt &RHS) {
675assert(BitWidth ==RHS.BitWidth &&"Bit widths must be the same");
676if (isSingleWord())
677 U.VAL &=RHS.U.VAL;
678else
679 andAssignSlowCase(RHS);
680return *this;
681 }
682
683 /// Bitwise AND assignment operator.
684 ///
685 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
686 /// logically zero-extended or truncated to match the bit-width of
687 /// the LHS.
688APInt &operator&=(uint64_tRHS) {
689if (isSingleWord()) {
690 U.VAL &=RHS;
691return *this;
692 }
693 U.pVal[0] &=RHS;
694 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
695return *this;
696 }
697
698 /// Bitwise OR assignment operator.
699 ///
700 /// Performs a bitwise OR operation on this APInt and RHS. The result is
701 /// assigned *this;
702 ///
703 /// \returns *this after ORing with RHS.
704APInt &operator|=(constAPInt &RHS) {
705assert(BitWidth ==RHS.BitWidth &&"Bit widths must be the same");
706if (isSingleWord())
707 U.VAL |=RHS.U.VAL;
708else
709 orAssignSlowCase(RHS);
710return *this;
711 }
712
713 /// Bitwise OR assignment operator.
714 ///
715 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
716 /// logically zero-extended or truncated to match the bit-width of
717 /// the LHS.
718APInt &operator|=(uint64_tRHS) {
719if (isSingleWord()) {
720 U.VAL |=RHS;
721returnclearUnusedBits();
722 }
723 U.pVal[0] |=RHS;
724return *this;
725 }
726
727 /// Bitwise XOR assignment operator.
728 ///
729 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
730 /// assigned to *this.
731 ///
732 /// \returns *this after XORing with RHS.
733APInt &operator^=(constAPInt &RHS) {
734assert(BitWidth ==RHS.BitWidth &&"Bit widths must be the same");
735if (isSingleWord())
736 U.VAL ^=RHS.U.VAL;
737else
738 xorAssignSlowCase(RHS);
739return *this;
740 }
741
742 /// Bitwise XOR assignment operator.
743 ///
744 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
745 /// logically zero-extended or truncated to match the bit-width of
746 /// the LHS.
747APInt &operator^=(uint64_tRHS) {
748if (isSingleWord()) {
749 U.VAL ^=RHS;
750returnclearUnusedBits();
751 }
752 U.pVal[0] ^=RHS;
753return *this;
754 }
755
756 /// Multiplication assignment operator.
757 ///
758 /// Multiplies this APInt by RHS and assigns the result to *this.
759 ///
760 /// \returns *this
761APInt &operator*=(constAPInt &RHS);
762APInt &operator*=(uint64_tRHS);
763
764 /// Addition assignment operator.
765 ///
766 /// Adds RHS to *this and assigns the result to *this.
767 ///
768 /// \returns *this
769APInt &operator+=(constAPInt &RHS);
770APInt &operator+=(uint64_tRHS);
771
772 /// Subtraction assignment operator.
773 ///
774 /// Subtracts RHS from *this and assigns the result to *this.
775 ///
776 /// \returns *this
777APInt &operator-=(constAPInt &RHS);
778APInt &operator-=(uint64_tRHS);
779
780 /// Left-shift assignment function.
781 ///
782 /// Shifts *this left by shiftAmt and assigns the result to *this.
783 ///
784 /// \returns *this after shifting left by ShiftAmt
785APInt &operator<<=(unsigned ShiftAmt) {
786assert(ShiftAmt <=BitWidth &&"Invalid shift amount");
787if (isSingleWord()) {
788if (ShiftAmt ==BitWidth)
789 U.VAL = 0;
790else
791 U.VAL <<= ShiftAmt;
792returnclearUnusedBits();
793 }
794 shlSlowCase(ShiftAmt);
795return *this;
796 }
797
798 /// Left-shift assignment function.
799 ///
800 /// Shifts *this left by shiftAmt and assigns the result to *this.
801 ///
802 /// \returns *this after shifting left by ShiftAmt
803APInt &operator<<=(constAPInt &ShiftAmt);
804
805 /// @}
806 /// \name Binary Operators
807 /// @{
808
809 /// Multiplication operator.
810 ///
811 /// Multiplies this APInt by RHS and returns the result.
812APIntoperator*(constAPInt &RHS)const;
813
814 /// Left logical shift operator.
815 ///
816 /// Shifts this APInt left by \p Bits and returns the result.
817APIntoperator<<(unsigned Bits) const{return shl(Bits); }
818
819 /// Left logical shift operator.
820 ///
821 /// Shifts this APInt left by \p Bits and returns the result.
822APIntoperator<<(constAPInt &Bits) const{return shl(Bits); }
823
824 /// Arithmetic right-shift function.
825 ///
826 /// Arithmetic right-shift this APInt by shiftAmt.
827APIntashr(unsigned ShiftAmt) const{
828APInt R(*this);
829 R.ashrInPlace(ShiftAmt);
830return R;
831 }
832
833 /// Arithmetic right-shift this APInt by ShiftAmt in place.
834voidashrInPlace(unsigned ShiftAmt) {
835assert(ShiftAmt <=BitWidth &&"Invalid shift amount");
836if (isSingleWord()) {
837 int64_t SExtVAL =SignExtend64(U.VAL,BitWidth);
838if (ShiftAmt ==BitWidth)
839 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1);// Fill with sign bit.
840else
841 U.VAL = SExtVAL >> ShiftAmt;
842clearUnusedBits();
843return;
844 }
845 ashrSlowCase(ShiftAmt);
846 }
847
848 /// Logical right-shift function.
849 ///
850 /// Logical right-shift this APInt by shiftAmt.
851APIntlshr(unsigned shiftAmt) const{
852APInt R(*this);
853 R.lshrInPlace(shiftAmt);
854return R;
855 }
856
857 /// Logical right-shift this APInt by ShiftAmt in place.
858voidlshrInPlace(unsigned ShiftAmt) {
859assert(ShiftAmt <=BitWidth &&"Invalid shift amount");
860if (isSingleWord()) {
861if (ShiftAmt ==BitWidth)
862 U.VAL = 0;
863else
864 U.VAL >>= ShiftAmt;
865return;
866 }
867 lshrSlowCase(ShiftAmt);
868 }
869
870 /// Left-shift function.
871 ///
872 /// Left-shift this APInt by shiftAmt.
873APIntshl(unsigned shiftAmt) const{
874APInt R(*this);
875 R <<= shiftAmt;
876return R;
877 }
878
879 /// relative logical shift right
880APIntrelativeLShr(int RelativeShift) const{
881return RelativeShift > 0 ? lshr(RelativeShift) : shl(-RelativeShift);
882 }
883
884 /// relative logical shift left
885APIntrelativeLShl(int RelativeShift) const{
886return relativeLShr(-RelativeShift);
887 }
888
889 /// relative arithmetic shift right
890APIntrelativeAShr(int RelativeShift) const{
891return RelativeShift > 0 ? ashr(RelativeShift) : shl(-RelativeShift);
892 }
893
894 /// relative arithmetic shift left
895APIntrelativeAShl(int RelativeShift) const{
896return relativeAShr(-RelativeShift);
897 }
898
899 /// Rotate left by rotateAmt.
900APIntrotl(unsigned rotateAmt)const;
901
902 /// Rotate right by rotateAmt.
903APIntrotr(unsigned rotateAmt)const;
904
905 /// Arithmetic right-shift function.
906 ///
907 /// Arithmetic right-shift this APInt by shiftAmt.
908APIntashr(constAPInt &ShiftAmt) const{
909APInt R(*this);
910 R.ashrInPlace(ShiftAmt);
911return R;
912 }
913
914 /// Arithmetic right-shift this APInt by shiftAmt in place.
915void ashrInPlace(constAPInt &shiftAmt);
916
917 /// Logical right-shift function.
918 ///
919 /// Logical right-shift this APInt by shiftAmt.
920APIntlshr(constAPInt &ShiftAmt) const{
921APInt R(*this);
922 R.lshrInPlace(ShiftAmt);
923return R;
924 }
925
926 /// Logical right-shift this APInt by ShiftAmt in place.
927void lshrInPlace(constAPInt &ShiftAmt);
928
929 /// Left-shift function.
930 ///
931 /// Left-shift this APInt by shiftAmt.
932APIntshl(constAPInt &ShiftAmt) const{
933APInt R(*this);
934 R <<= ShiftAmt;
935return R;
936 }
937
938 /// Rotate left by rotateAmt.
939APIntrotl(constAPInt &rotateAmt)const;
940
941 /// Rotate right by rotateAmt.
942APIntrotr(constAPInt &rotateAmt)const;
943
944 /// Concatenate the bits from "NewLSB" onto the bottom of *this. This is
945 /// equivalent to:
946 /// (this->zext(NewWidth) << NewLSB.getBitWidth()) | NewLSB.zext(NewWidth)
947APIntconcat(constAPInt &NewLSB) const{
948 /// If the result will be small, then both the merged values are small.
949unsigned NewWidth =getBitWidth() + NewLSB.getBitWidth();
950if (NewWidth <= APINT_BITS_PER_WORD)
951returnAPInt(NewWidth, (U.VAL << NewLSB.getBitWidth()) | NewLSB.U.VAL);
952return concatSlowCase(NewLSB);
953 }
954
955 /// Unsigned division operation.
956 ///
957 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
958 /// RHS are treated as unsigned quantities for purposes of this division.
959 ///
960 /// \returns a new APInt value containing the division result, rounded towards
961 /// zero.
962APInt udiv(constAPInt &RHS)const;
963APInt udiv(uint64_tRHS)const;
964
965 /// Signed division function for APInt.
966 ///
967 /// Signed divide this APInt by APInt RHS.
968 ///
969 /// The result is rounded towards zero.
970APInt sdiv(constAPInt &RHS)const;
971APInt sdiv(int64_tRHS)const;
972
973 /// Unsigned remainder operation.
974 ///
975 /// Perform an unsigned remainder operation on this APInt with RHS being the
976 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
977 /// of this operation.
978 ///
979 /// \returns a new APInt value containing the remainder result
980APInt urem(constAPInt &RHS)const;
981uint64_t urem(uint64_tRHS)const;
982
983 /// Function for signed remainder operation.
984 ///
985 /// Signed remainder operation on APInt.
986 ///
987 /// Note that this is a true remainder operation and not a modulo operation
988 /// because the sign follows the sign of the dividend which is *this.
989APInt srem(constAPInt &RHS)const;
990 int64_t srem(int64_tRHS)const;
991
992 /// Dual division/remainder interface.
993 ///
994 /// Sometimes it is convenient to divide two APInt values and obtain both the
995 /// quotient and remainder. This function does both operations in the same
996 /// computation making it a little more efficient. The pair of input arguments
997 /// may overlap with the pair of output arguments. It is safe to call
998 /// udivrem(X, Y, X, Y), for example.
999staticvoid udivrem(constAPInt &LHS,constAPInt &RHS,APInt &Quotient,
1000APInt &Remainder);
1001staticvoid udivrem(constAPInt &LHS,uint64_tRHS,APInt &Quotient,
1002uint64_t &Remainder);
1003
1004staticvoid sdivrem(constAPInt &LHS,constAPInt &RHS,APInt &Quotient,
1005APInt &Remainder);
1006staticvoid sdivrem(constAPInt &LHS, int64_tRHS,APInt &Quotient,
1007 int64_t &Remainder);
1008
1009// Operations that return overflow indicators.
1010APInt sadd_ov(constAPInt &RHS,bool &Overflow)const;
1011APInt uadd_ov(constAPInt &RHS,bool &Overflow)const;
1012APInt ssub_ov(constAPInt &RHS,bool &Overflow)const;
1013APInt usub_ov(constAPInt &RHS,bool &Overflow)const;
1014APInt sdiv_ov(constAPInt &RHS,bool &Overflow)const;
1015APInt smul_ov(constAPInt &RHS,bool &Overflow)const;
1016APIntumul_ov(constAPInt &RHS,bool &Overflow)const;
1017APInt sshl_ov(constAPInt &Amt,bool &Overflow)const;
1018APInt sshl_ov(unsigned Amt,bool &Overflow)const;
1019APInt ushl_ov(constAPInt &Amt,bool &Overflow)const;
1020APInt ushl_ov(unsigned Amt,bool &Overflow)const;
1021
1022 /// Signed integer floor division operation.
1023 ///
1024 /// Rounds towards negative infinity, i.e. 5 / -2 = -3. Iff minimum value
1025 /// divided by -1 set Overflow to true.
1026APInt sfloordiv_ov(constAPInt &RHS,bool &Overflow)const;
1027
1028// Operations that saturate
1029APInt sadd_sat(constAPInt &RHS)const;
1030APInt uadd_sat(constAPInt &RHS)const;
1031APInt ssub_sat(constAPInt &RHS)const;
1032APInt usub_sat(constAPInt &RHS)const;
1033APInt smul_sat(constAPInt &RHS)const;
1034APInt umul_sat(constAPInt &RHS)const;
1035APInt sshl_sat(constAPInt &RHS)const;
1036APInt sshl_sat(unsignedRHS)const;
1037APInt ushl_sat(constAPInt &RHS)const;
1038APInt ushl_sat(unsignedRHS)const;
1039
1040 /// Array-indexing support.
1041 ///
1042 /// \returns the bit value at bitPosition
1043booloperator[](unsigned bitPosition) const{
1044assert(bitPosition <getBitWidth() &&"Bit position out of bounds!");
1045return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1046 }
1047
1048 /// @}
1049 /// \name Comparison Operators
1050 /// @{
1051
1052 /// Equality operator.
1053 ///
1054 /// Compares this APInt with RHS for the validity of the equality
1055 /// relationship.
1056booloperator==(constAPInt &RHS) const{
1057assert(BitWidth ==RHS.BitWidth &&"Comparison requires equal bit widths");
1058if (isSingleWord())
1059return U.VAL ==RHS.U.VAL;
1060return equalSlowCase(RHS);
1061 }
1062
1063 /// Equality operator.
1064 ///
1065 /// Compares this APInt with a uint64_t for the validity of the equality
1066 /// relationship.
1067 ///
1068 /// \returns true if *this == Val
1069booloperator==(uint64_t Val) const{
1070return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1071 }
1072
1073 /// Equality comparison.
1074 ///
1075 /// Compares this APInt with RHS for the validity of the equality
1076 /// relationship.
1077 ///
1078 /// \returns true if *this == Val
1079booleq(constAPInt &RHS) const{return (*this) ==RHS; }
1080
1081 /// Inequality operator.
1082 ///
1083 /// Compares this APInt with RHS for the validity of the inequality
1084 /// relationship.
1085 ///
1086 /// \returns true if *this != Val
1087booloperator!=(constAPInt &RHS) const{return !((*this) ==RHS); }
1088
1089 /// Inequality operator.
1090 ///
1091 /// Compares this APInt with a uint64_t for the validity of the inequality
1092 /// relationship.
1093 ///
1094 /// \returns true if *this != Val
1095booloperator!=(uint64_t Val) const{return !((*this) == Val); }
1096
1097 /// Inequality comparison
1098 ///
1099 /// Compares this APInt with RHS for the validity of the inequality
1100 /// relationship.
1101 ///
1102 /// \returns true if *this != Val
1103boolne(constAPInt &RHS) const{return !((*this) ==RHS); }
1104
1105 /// Unsigned less than comparison
1106 ///
1107 /// Regards both *this and RHS as unsigned quantities and compares them for
1108 /// the validity of the less-than relationship.
1109 ///
1110 /// \returns true if *this < RHS when both are considered unsigned.
1111boolult(constAPInt &RHS) const{return compare(RHS) < 0; }
1112
1113 /// Unsigned less than comparison
1114 ///
1115 /// Regards both *this as an unsigned quantity and compares it with RHS for
1116 /// the validity of the less-than relationship.
1117 ///
1118 /// \returns true if *this < RHS when considered unsigned.
1119boolult(uint64_tRHS) const{
1120// Only need to check active bits if not a single word.
1121return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() <RHS;
1122 }
1123
1124 /// Signed less than comparison
1125 ///
1126 /// Regards both *this and RHS as signed quantities and compares them for
1127 /// validity of the less-than relationship.
1128 ///
1129 /// \returns true if *this < RHS when both are considered signed.
1130boolslt(constAPInt &RHS) const{return compareSigned(RHS) < 0; }
1131
1132 /// Signed less than comparison
1133 ///
1134 /// Regards both *this as a signed quantity and compares it with RHS for
1135 /// the validity of the less-than relationship.
1136 ///
1137 /// \returns true if *this < RHS when considered signed.
1138boolslt(int64_tRHS) const{
1139return (!isSingleWord() && getSignificantBits() > 64)
1140 ? isNegative()
1141 : getSExtValue() <RHS;
1142 }
1143
1144 /// Unsigned less or equal comparison
1145 ///
1146 /// Regards both *this and RHS as unsigned quantities and compares them for
1147 /// validity of the less-or-equal relationship.
1148 ///
1149 /// \returns true if *this <= RHS when both are considered unsigned.
1150boolule(constAPInt &RHS) const{return compare(RHS) <= 0; }
1151
1152 /// Unsigned less or equal comparison
1153 ///
1154 /// Regards both *this as an unsigned quantity and compares it with RHS for
1155 /// the validity of the less-or-equal relationship.
1156 ///
1157 /// \returns true if *this <= RHS when considered unsigned.
1158boolule(uint64_tRHS) const{return !ugt(RHS); }
1159
1160 /// Signed less or equal comparison
1161 ///
1162 /// Regards both *this and RHS as signed quantities and compares them for
1163 /// validity of the less-or-equal relationship.
1164 ///
1165 /// \returns true if *this <= RHS when both are considered signed.
1166boolsle(constAPInt &RHS) const{return compareSigned(RHS) <= 0; }
1167
1168 /// Signed less or equal comparison
1169 ///
1170 /// Regards both *this as a signed quantity and compares it with RHS for the
1171 /// validity of the less-or-equal relationship.
1172 ///
1173 /// \returns true if *this <= RHS when considered signed.
1174boolsle(uint64_tRHS) const{return !sgt(RHS); }
1175
1176 /// Unsigned greater than comparison
1177 ///
1178 /// Regards both *this and RHS as unsigned quantities and compares them for
1179 /// the validity of the greater-than relationship.
1180 ///
1181 /// \returns true if *this > RHS when both are considered unsigned.
1182boolugt(constAPInt &RHS) const{return !ule(RHS); }
1183
1184 /// Unsigned greater than comparison
1185 ///
1186 /// Regards both *this as an unsigned quantity and compares it with RHS for
1187 /// the validity of the greater-than relationship.
1188 ///
1189 /// \returns true if *this > RHS when considered unsigned.
1190boolugt(uint64_tRHS) const{
1191// Only need to check active bits if not a single word.
1192return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() >RHS;
1193 }
1194
1195 /// Signed greater than comparison
1196 ///
1197 /// Regards both *this and RHS as signed quantities and compares them for the
1198 /// validity of the greater-than relationship.
1199 ///
1200 /// \returns true if *this > RHS when both are considered signed.
1201boolsgt(constAPInt &RHS) const{return !sle(RHS); }
1202
1203 /// Signed greater than comparison
1204 ///
1205 /// Regards both *this as a signed quantity and compares it with RHS for
1206 /// the validity of the greater-than relationship.
1207 ///
1208 /// \returns true if *this > RHS when considered signed.
1209boolsgt(int64_tRHS) const{
1210return (!isSingleWord() && getSignificantBits() > 64)
1211 ? !isNegative()
1212 : getSExtValue() >RHS;
1213 }
1214
1215 /// Unsigned greater or equal comparison
1216 ///
1217 /// Regards both *this and RHS as unsigned quantities and compares them for
1218 /// validity of the greater-or-equal relationship.
1219 ///
1220 /// \returns true if *this >= RHS when both are considered unsigned.
1221booluge(constAPInt &RHS) const{return !ult(RHS); }
1222
1223 /// Unsigned greater or equal comparison
1224 ///
1225 /// Regards both *this as an unsigned quantity and compares it with RHS for
1226 /// the validity of the greater-or-equal relationship.
1227 ///
1228 /// \returns true if *this >= RHS when considered unsigned.
1229booluge(uint64_tRHS) const{return !ult(RHS); }
1230
1231 /// Signed greater or equal comparison
1232 ///
1233 /// Regards both *this and RHS as signed quantities and compares them for
1234 /// validity of the greater-or-equal relationship.
1235 ///
1236 /// \returns true if *this >= RHS when both are considered signed.
1237boolsge(constAPInt &RHS) const{return !slt(RHS); }
1238
1239 /// Signed greater or equal comparison
1240 ///
1241 /// Regards both *this as a signed quantity and compares it with RHS for
1242 /// the validity of the greater-or-equal relationship.
1243 ///
1244 /// \returns true if *this >= RHS when considered signed.
1245boolsge(int64_tRHS) const{return !slt(RHS); }
1246
1247 /// This operation tests if there are any pairs of corresponding bits
1248 /// between this APInt and RHS that are both set.
1249boolintersects(constAPInt &RHS) const{
1250assert(BitWidth ==RHS.BitWidth &&"Bit widths must be the same");
1251if (isSingleWord())
1252return (U.VAL &RHS.U.VAL) != 0;
1253return intersectsSlowCase(RHS);
1254 }
1255
1256 /// This operation checks that all bits set in this APInt are also set in RHS.
1257boolisSubsetOf(constAPInt &RHS) const{
1258assert(BitWidth ==RHS.BitWidth &&"Bit widths must be the same");
1259if (isSingleWord())
1260return (U.VAL & ~RHS.U.VAL) == 0;
1261return isSubsetOfSlowCase(RHS);
1262 }
1263
1264 /// @}
1265 /// \name Resizing Operators
1266 /// @{
1267
1268 /// Truncate to new width.
1269 ///
1270 /// Truncate the APInt to a specified width. It is an error to specify a width
1271 /// that is greater than the current width.
1272APInt trunc(unsigned width)const;
1273
1274 /// Truncate to new width with unsigned saturation.
1275 ///
1276 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1277 /// the new bitwidth, then return truncated APInt. Else, return max value.
1278APInt truncUSat(unsigned width)const;
1279
1280 /// Truncate to new width with signed saturation.
1281 ///
1282 /// If this APInt, treated as signed integer, can be losslessly truncated to
1283 /// the new bitwidth, then return truncated APInt. Else, return either
1284 /// signed min value if the APInt was negative, or signed max value.
1285APInt truncSSat(unsigned width)const;
1286
1287 /// Sign extend to a new width.
1288 ///
1289 /// This operation sign extends the APInt to a new width. If the high order
1290 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1291 /// It is an error to specify a width that is less than the
1292 /// current width.
1293APInt sext(unsigned width)const;
1294
1295 /// Zero extend to a new width.
1296 ///
1297 /// This operation zero extends the APInt to a new width. The high order bits
1298 /// are filled with 0 bits. It is an error to specify a width that is less
1299 /// than the current width.
1300APInt zext(unsigned width)const;
1301
1302 /// Sign extend or truncate to width
1303 ///
1304 /// Make this APInt have the bit width given by \p width. The value is sign
1305 /// extended, truncated, or left alone to make it that width.
1306APInt sextOrTrunc(unsigned width)const;
1307
1308 /// Zero extend or truncate to width
1309 ///
1310 /// Make this APInt have the bit width given by \p width. The value is zero
1311 /// extended, truncated, or left alone to make it that width.
1312APInt zextOrTrunc(unsigned width)const;
1313
1314 /// @}
1315 /// \name Bit Manipulation Operators
1316 /// @{
1317
1318 /// Set every bit to 1.
1319voidsetAllBits() {
1320if (isSingleWord())
1321 U.VAL = WORDTYPE_MAX;
1322else
1323// Set all the bits in all the words.
1324 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1325// Clear the unused ones
1326clearUnusedBits();
1327 }
1328
1329 /// Set the given bit to 1 whose position is given as "bitPosition".
1330voidsetBit(unsigned BitPosition) {
1331assert(BitPosition <BitWidth &&"BitPosition out of range");
1332WordType Mask = maskBit(BitPosition);
1333if (isSingleWord())
1334 U.VAL |= Mask;
1335else
1336 U.pVal[whichWord(BitPosition)] |= Mask;
1337 }
1338
1339 /// Set the sign bit to 1.
1340voidsetSignBit() { setBit(BitWidth - 1); }
1341
1342 /// Set a given bit to a given value.
1343voidsetBitVal(unsigned BitPosition,bool BitValue) {
1344if (BitValue)
1345 setBit(BitPosition);
1346else
1347 clearBit(BitPosition);
1348 }
1349
1350 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1351 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1352 /// setBits when \p loBit < \p hiBit.
1353 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1354voidsetBitsWithWrap(unsigned loBit,unsigned hiBit) {
1355assert(hiBit <=BitWidth &&"hiBit out of range");
1356assert(loBit <=BitWidth &&"loBit out of range");
1357if (loBit < hiBit) {
1358 setBits(loBit, hiBit);
1359return;
1360 }
1361 setLowBits(hiBit);
1362 setHighBits(BitWidth - loBit);
1363 }
1364
1365 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1366 /// This function handles case when \p loBit <= \p hiBit.
1367voidsetBits(unsigned loBit,unsigned hiBit) {
1368assert(hiBit <=BitWidth &&"hiBit out of range");
1369assert(loBit <=BitWidth &&"loBit out of range");
1370assert(loBit <= hiBit &&"loBit greater than hiBit");
1371if (loBit == hiBit)
1372return;
1373if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1374uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1375 mask <<= loBit;
1376if (isSingleWord())
1377 U.VAL |= mask;
1378else
1379 U.pVal[0] |= mask;
1380 }else {
1381 setBitsSlowCase(loBit, hiBit);
1382 }
1383 }
1384
1385 /// Set the top bits starting from loBit.
1386voidsetBitsFrom(unsigned loBit) {return setBits(loBit,BitWidth); }
1387
1388 /// Set the bottom loBits bits.
1389voidsetLowBits(unsigned loBits) {return setBits(0, loBits); }
1390
1391 /// Set the top hiBits bits.
1392voidsetHighBits(unsigned hiBits) {
1393return setBits(BitWidth - hiBits,BitWidth);
1394 }
1395
1396 /// Set every bit to 0.
1397voidclearAllBits() {
1398if (isSingleWord())
1399 U.VAL = 0;
1400else
1401 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1402 }
1403
1404 /// Set a given bit to 0.
1405 ///
1406 /// Set the given bit to 0 whose position is given as "bitPosition".
1407voidclearBit(unsigned BitPosition) {
1408assert(BitPosition <BitWidth &&"BitPosition out of range");
1409WordType Mask = ~maskBit(BitPosition);
1410if (isSingleWord())
1411 U.VAL &= Mask;
1412else
1413 U.pVal[whichWord(BitPosition)] &= Mask;
1414 }
1415
1416 /// Set bottom loBits bits to 0.
1417voidclearLowBits(unsigned loBits) {
1418assert(loBits <=BitWidth &&"More bits than bitwidth");
1419APIntKeep = getHighBitsSet(BitWidth,BitWidth - loBits);
1420 *this &=Keep;
1421 }
1422
1423 /// Set top hiBits bits to 0.
1424voidclearHighBits(unsigned hiBits) {
1425assert(hiBits <=BitWidth &&"More bits than bitwidth");
1426APIntKeep = getLowBitsSet(BitWidth,BitWidth - hiBits);
1427 *this &=Keep;
1428 }
1429
1430 /// Set the sign bit to 0.
1431voidclearSignBit() { clearBit(BitWidth - 1); }
1432
1433 /// Toggle every bit to its opposite value.
1434voidflipAllBits() {
1435if (isSingleWord()) {
1436 U.VAL ^= WORDTYPE_MAX;
1437clearUnusedBits();
1438 }else {
1439 flipAllBitsSlowCase();
1440 }
1441 }
1442
1443 /// Toggles a given bit to its opposite value.
1444 ///
1445 /// Toggle a given bit to its opposite value whose position is given
1446 /// as "bitPosition".
1447void flipBit(unsigned bitPosition);
1448
1449 /// Negate this APInt in place.
1450voidnegate() {
1451 flipAllBits();
1452 ++(*this);
1453 }
1454
1455 /// Insert the bits from a smaller APInt starting at bitPosition.
1456void insertBits(constAPInt &SubBits,unsigned bitPosition);
1457void insertBits(uint64_t SubBits,unsigned bitPosition,unsigned numBits);
1458
1459 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1460APIntextractBits(unsigned numBits,unsigned bitPosition)const;
1461uint64_t extractBitsAsZExtValue(unsigned numBits,unsigned bitPosition)const;
1462
1463 /// @}
1464 /// \name Value Characterization Functions
1465 /// @{
1466
1467 /// Return the number of bits in the APInt.
1468unsignedgetBitWidth() const{returnBitWidth; }
1469
1470 /// Get the number of words.
1471 ///
1472 /// Here one word's bitwidth equals to that of uint64_t.
1473 ///
1474 /// \returns the number of words to hold the integer value of this APInt.
1475unsignedgetNumWords() const{returngetNumWords(BitWidth); }
1476
1477 /// Get the number of words.
1478 ///
1479 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1480 ///
1481 /// \returns the number of words to hold the integer value with a given bit
1482 /// width.
1483staticunsignedgetNumWords(unsignedBitWidth) {
1484return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1485 }
1486
1487 /// Compute the number of active bits in the value
1488 ///
1489 /// This function returns the number of active bits which is defined as the
1490 /// bit width minus the number of leading zeros. This is used in several
1491 /// computations to see how "wide" the value is.
1492unsignedgetActiveBits() const{returnBitWidth -countl_zero(); }
1493
1494 /// Compute the number of active words in the value of this APInt.
1495 ///
1496 /// This is used in conjunction with getActiveData to extract the raw value of
1497 /// the APInt.
1498unsignedgetActiveWords() const{
1499unsigned numActiveBits = getActiveBits();
1500return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1501 }
1502
1503 /// Get the minimum bit size for this signed APInt
1504 ///
1505 /// Computes the minimum bit width for this APInt while considering it to be a
1506 /// signed (and probably negative) value. If the value is not negative, this
1507 /// function returns the same value as getActiveBits()+1. Otherwise, it
1508 /// returns the smallest bit width that will retain the negative value. For
1509 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1510 /// for -1, this function will always return 1.
1511unsignedgetSignificantBits() const{
1512returnBitWidth - getNumSignBits() + 1;
1513 }
1514
1515 /// Get zero extended value
1516 ///
1517 /// This method attempts to return the value of this APInt as a zero extended
1518 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1519 /// uint64_t. Otherwise an assertion will result.
1520uint64_tgetZExtValue() const{
1521if (isSingleWord())
1522return U.VAL;
1523assert(getActiveBits() <= 64 &&"Too many bits for uint64_t");
1524return U.pVal[0];
1525 }
1526
1527 /// Get zero extended value if possible
1528 ///
1529 /// This method attempts to return the value of this APInt as a zero extended
1530 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1531 /// uint64_t. Otherwise no value is returned.
1532 std::optional<uint64_t>tryZExtValue() const{
1533return (getActiveBits() <= 64) ? std::optional<uint64_t>(getZExtValue())
1534 : std::nullopt;
1535 };
1536
1537 /// Get sign extended value
1538 ///
1539 /// This method attempts to return the value of this APInt as a sign extended
1540 /// int64_t. The bit width must be <= 64 or the value must fit within an
1541 /// int64_t. Otherwise an assertion will result.
1542 int64_tgetSExtValue() const{
1543if (isSingleWord())
1544returnSignExtend64(U.VAL,BitWidth);
1545assert(getSignificantBits() <= 64 &&"Too many bits for int64_t");
1546return int64_t(U.pVal[0]);
1547 }
1548
1549 /// Get sign extended value if possible
1550 ///
1551 /// This method attempts to return the value of this APInt as a sign extended
1552 /// int64_t. The bitwidth must be <= 64 or the value must fit within an
1553 /// int64_t. Otherwise no value is returned.
1554 std::optional<int64_t>trySExtValue() const{
1555return (getSignificantBits() <= 64) ? std::optional<int64_t>(getSExtValue())
1556 : std::nullopt;
1557 };
1558
1559 /// Get bits required for string value.
1560 ///
1561 /// This method determines how many bits are required to hold the APInt
1562 /// equivalent of the string given by \p str.
1563staticunsigned getBitsNeeded(StringRef str,uint8_t radix);
1564
1565 /// Get the bits that are sufficient to represent the string value. This may
1566 /// over estimate the amount of bits required, but it does not require
1567 /// parsing the value in the string.
1568staticunsigned getSufficientBitsNeeded(StringRef Str,uint8_t Radix);
1569
1570 /// The APInt version of std::countl_zero.
1571 ///
1572 /// It counts the number of zeros from the most significant bit to the first
1573 /// one bit.
1574 ///
1575 /// \returns BitWidth if the value is zero, otherwise returns the number of
1576 /// zeros from the most significant bit to the first one bits.
1577unsignedcountl_zero() const{
1578if (isSingleWord()) {
1579unsigned unusedBits = APINT_BITS_PER_WORD -BitWidth;
1580returnllvm::countl_zero(U.VAL) - unusedBits;
1581 }
1582return countLeadingZerosSlowCase();
1583 }
1584
1585unsignedcountLeadingZeros() const{returncountl_zero(); }
1586
1587 /// Count the number of leading one bits.
1588 ///
1589 /// This function is an APInt version of std::countl_one. It counts the number
1590 /// of ones from the most significant bit to the first zero bit.
1591 ///
1592 /// \returns 0 if the high order bit is not set, otherwise returns the number
1593 /// of 1 bits from the most significant to the least
1594unsignedcountl_one() const{
1595if (isSingleWord()) {
1596if (LLVM_UNLIKELY(BitWidth == 0))
1597return 0;
1598returnllvm::countl_one(U.VAL << (APINT_BITS_PER_WORD -BitWidth));
1599 }
1600return countLeadingOnesSlowCase();
1601 }
1602
1603unsignedcountLeadingOnes() const{returncountl_one(); }
1604
1605 /// Computes the number of leading bits of this APInt that are equal to its
1606 /// sign bit.
1607unsignedgetNumSignBits() const{
1608return isNegative() ?countl_one() :countl_zero();
1609 }
1610
1611 /// Count the number of trailing zero bits.
1612 ///
1613 /// This function is an APInt version of std::countr_zero. It counts the
1614 /// number of zeros from the least significant bit to the first set bit.
1615 ///
1616 /// \returns BitWidth if the value is zero, otherwise returns the number of
1617 /// zeros from the least significant bit to the first one bit.
1618unsignedcountr_zero() const{
1619if (isSingleWord()) {
1620unsigned TrailingZeros =llvm::countr_zero(U.VAL);
1621return (TrailingZeros >BitWidth ?BitWidth : TrailingZeros);
1622 }
1623return countTrailingZerosSlowCase();
1624 }
1625
1626unsignedcountTrailingZeros() const{returncountr_zero(); }
1627
1628 /// Count the number of trailing one bits.
1629 ///
1630 /// This function is an APInt version of std::countr_one. It counts the number
1631 /// of ones from the least significant bit to the first zero bit.
1632 ///
1633 /// \returns BitWidth if the value is all ones, otherwise returns the number
1634 /// of ones from the least significant bit to the first zero bit.
1635unsignedcountr_one() const{
1636if (isSingleWord())
1637returnllvm::countr_one(U.VAL);
1638return countTrailingOnesSlowCase();
1639 }
1640
1641unsignedcountTrailingOnes() const{returncountr_one(); }
1642
1643 /// Count the number of bits set.
1644 ///
1645 /// This function is an APInt version of std::popcount. It counts the number
1646 /// of 1 bits in the APInt value.
1647 ///
1648 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1649unsignedpopcount() const{
1650if (isSingleWord())
1651returnllvm::popcount(U.VAL);
1652return countPopulationSlowCase();
1653 }
1654
1655 /// @}
1656 /// \name Conversion Functions
1657 /// @{
1658voidprint(raw_ostream &OS,boolisSigned)const;
1659
1660 /// Converts an APInt to a string and append it to Str. Str is commonly a
1661 /// SmallString. If Radix > 10, UpperCase determine the case of letter
1662 /// digits.
1663voidtoString(SmallVectorImpl<char> &Str,unsigned Radix,boolSigned,
1664bool formatAsCLiteral =false,bool UpperCase =true,
1665bool InsertSeparators =false)const;
1666
1667 /// Considers the APInt to be unsigned and converts it into a string in the
1668 /// radix given. The radix can be 2, 8, 10 16, or 36.
1669voidtoStringUnsigned(SmallVectorImpl<char> &Str,unsigned Radix = 10) const{
1670toString(Str, Radix,false,false);
1671 }
1672
1673 /// Considers the APInt to be signed and converts it into a string in the
1674 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1675voidtoStringSigned(SmallVectorImpl<char> &Str,unsigned Radix = 10) const{
1676toString(Str, Radix,true,false);
1677 }
1678
1679 /// \returns a byte-swapped representation of this APInt Value.
1680APInt byteSwap()const;
1681
1682 /// \returns the value with the bit representation reversed of this APInt
1683 /// Value.
1684APIntreverseBits()const;
1685
1686 /// Converts this APInt to a double value.
1687double roundToDouble(boolisSigned)const;
1688
1689 /// Converts this unsigned APInt to a double value.
1690doubleroundToDouble() const{returnroundToDouble(false); }
1691
1692 /// Converts this signed APInt to a double value.
1693doublesignedRoundToDouble() const{return roundToDouble(true); }
1694
1695 /// Converts APInt bits to a double
1696 ///
1697 /// The conversion does not do a translation from integer to double, it just
1698 /// re-interprets the bits as a double. Note that it is valid to do this on
1699 /// any bit width. Exactly 64 bits will be translated.
1700doublebitsToDouble() const{return llvm::bit_cast<double>(getWord(0)); }
1701
1702#ifdef HAS_IEE754_FLOAT128
1703 float128 bitsToQuad() const{
1704 __uint128_t ul = ((__uint128_t)U.pVal[1] << 64) + U.pVal[0];
1705return llvm::bit_cast<float128>(ul);
1706 }
1707#endif
1708
1709 /// Converts APInt bits to a float
1710 ///
1711 /// The conversion does not do a translation from integer to float, it just
1712 /// re-interprets the bits as a float. Note that it is valid to do this on
1713 /// any bit width. Exactly 32 bits will be translated.
1714floatbitsToFloat() const{
1715return llvm::bit_cast<float>(static_cast<uint32_t>(getWord(0)));
1716 }
1717
1718 /// Converts a double to APInt bits.
1719 ///
1720 /// The conversion does not do a translation from double to integer, it just
1721 /// re-interprets the bits of the double.
1722staticAPIntdoubleToBits(double V) {
1723returnAPInt(sizeof(double) * CHAR_BIT, llvm::bit_cast<uint64_t>(V));
1724 }
1725
1726 /// Converts a float to APInt bits.
1727 ///
1728 /// The conversion does not do a translation from float to integer, it just
1729 /// re-interprets the bits of the float.
1730staticAPIntfloatToBits(float V) {
1731returnAPInt(sizeof(float) * CHAR_BIT, llvm::bit_cast<uint32_t>(V));
1732 }
1733
1734 /// @}
1735 /// \name Mathematics Operations
1736 /// @{
1737
1738 /// \returns the floor log base 2 of this APInt.
1739unsignedlogBase2() const{return getActiveBits() - 1; }
1740
1741 /// \returns the ceil log base 2 of this APInt.
1742unsignedceilLogBase2() const{
1743APInt temp(*this);
1744 --temp;
1745return temp.getActiveBits();
1746 }
1747
1748 /// \returns the nearest log base 2 of this APInt. Ties round up.
1749 ///
1750 /// NOTE: When we have a BitWidth of 1, we define:
1751 ///
1752 /// log2(0) = UINT32_MAX
1753 /// log2(1) = 0
1754 ///
1755 /// to get around any mathematical concerns resulting from
1756 /// referencing 2 in a space where 2 does no exist.
1757unsigned nearestLogBase2()const;
1758
1759 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1760 /// otherwise
1761 int32_texactLogBase2() const{
1762if (!isPowerOf2())
1763return -1;
1764return logBase2();
1765 }
1766
1767 /// Compute the square root.
1768APInt sqrt()const;
1769
1770 /// Get the absolute value. If *this is < 0 then return -(*this), otherwise
1771 /// *this. Note that the "most negative" signed number (e.g. -128 for 8 bit
1772 /// wide APInt) is unchanged due to how negation works.
1773APIntabs() const{
1774if (isNegative())
1775return -(*this);
1776return *this;
1777 }
1778
1779 /// \returns the multiplicative inverse of an odd APInt modulo 2^BitWidth.
1780APInt multiplicativeInverse()const;
1781
1782 /// @}
1783 /// \name Building-block Operations for APInt and APFloat
1784 /// @{
1785
1786// These building block operations operate on a representation of arbitrary
1787// precision, two's-complement, bignum integer values. They should be
1788// sufficient to implement APInt and APFloat bignum requirements. Inputs are
1789// generally a pointer to the base of an array of integer parts, representing
1790// an unsigned bignum, and a count of how many parts there are.
1791
1792 /// Sets the least significant part of a bignum to the input value, and zeroes
1793 /// out higher parts.
1794staticvoid tcSet(WordType *, WordType,unsigned);
1795
1796 /// Assign one bignum to another.
1797staticvoid tcAssign(WordType *,const WordType *,unsigned);
1798
1799 /// Returns true if a bignum is zero, false otherwise.
1800staticbool tcIsZero(const WordType *,unsigned);
1801
1802 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1803staticint tcExtractBit(const WordType *,unsigned bit);
1804
1805 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1806 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1807 /// significant bit of DST. All high bits above srcBITS in DST are
1808 /// zero-filled.
1809staticvoid tcExtract(WordType *,unsigned dstCount,const WordType *,
1810unsigned srcBits,unsigned srcLSB);
1811
1812 /// Set the given bit of a bignum. Zero-based.
1813staticvoid tcSetBit(WordType *,unsigned bit);
1814
1815 /// Clear the given bit of a bignum. Zero-based.
1816staticvoid tcClearBit(WordType *,unsigned bit);
1817
1818 /// Returns the bit number of the least or most significant set bit of a
1819 /// number. If the input number has no bits set -1U is returned.
1820staticunsigned tcLSB(const WordType *,unsigned n);
1821staticunsigned tcMSB(const WordType *parts,unsigned n);
1822
1823 /// Negate a bignum in-place.
1824staticvoid tcNegate(WordType *,unsigned);
1825
1826 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1827static WordType tcAdd(WordType *,const WordType *, WordType carry,unsigned);
1828 /// DST += RHS. Returns the carry flag.
1829static WordType tcAddPart(WordType *, WordType,unsigned);
1830
1831 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1832static WordType tcSubtract(WordType *,const WordType *, WordType carry,
1833unsigned);
1834 /// DST -= RHS. Returns the carry flag.
1835static WordType tcSubtractPart(WordType *, WordType,unsigned);
1836
1837 /// DST += SRC * MULTIPLIER + PART if add is true
1838 /// DST = SRC * MULTIPLIER + PART if add is false
1839 ///
1840 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1841 /// start at the same point, i.e. DST == SRC.
1842 ///
1843 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1844 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1845 /// result, and if all of the omitted higher parts were zero return zero,
1846 /// otherwise overflow occurred and return one.
1847staticint tcMultiplyPart(WordType *dst,const WordType *src,
1848 WordType multiplier, WordType carry,
1849unsigned srcParts,unsigned dstParts,bool add);
1850
1851 /// DST = LHS * RHS, where DST has the same width as the operands and is
1852 /// filled with the least significant parts of the result. Returns one if
1853 /// overflow occurred, otherwise zero. DST must be disjoint from both
1854 /// operands.
1855staticint tcMultiply(WordType *,const WordType *,const WordType *,
1856unsigned);
1857
1858 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1859 /// operands. No overflow occurs. DST must be disjoint from both operands.
1860staticvoid tcFullMultiply(WordType *,const WordType *,const WordType *,
1861unsigned,unsigned);
1862
1863 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1864 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1865 /// REMAINDER to the remainder, return zero. i.e.
1866 ///
1867 /// OLD_LHS = RHS * LHS + REMAINDER
1868 ///
1869 /// SCRATCH is a bignum of the same size as the operands and result for use by
1870 /// the routine; its contents need not be initialized and are destroyed. LHS,
1871 /// REMAINDER and SCRATCH must be distinct.
1872staticint tcDivide(WordType *lhs,const WordType *rhs, WordType *remainder,
1873 WordType *scratch,unsigned parts);
1874
1875 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1876 /// restrictions on Count.
1877staticvoid tcShiftLeft(WordType *,unsigned Words,unsigned Count);
1878
1879 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1880 /// restrictions on Count.
1881staticvoid tcShiftRight(WordType *,unsigned Words,unsigned Count);
1882
1883 /// Comparison (unsigned) of two bignums.
1884staticint tcCompare(const WordType *,const WordType *,unsigned);
1885
1886 /// Increment a bignum in-place. Return the carry flag.
1887staticWordTypetcIncrement(WordType *dst,unsigned parts) {
1888return tcAddPart(dst, 1, parts);
1889 }
1890
1891 /// Decrement a bignum in-place. Return the borrow flag.
1892staticWordTypetcDecrement(WordType *dst,unsigned parts) {
1893return tcSubtractPart(dst, 1, parts);
1894 }
1895
1896 /// Used to insert APInt objects, or objects that contain APInt objects, into
1897 /// FoldingSets.
1898voidProfile(FoldingSetNodeID &id)const;
1899
1900 /// debug method
1901voiddump()const;
1902
1903 /// Returns whether this instance allocated memory.
1904boolneedsCleanup() const{return !isSingleWord(); }
1905
1906private:
1907 /// This union is used to store the integer value. When the
1908 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
1909union{
1910uint64_tVAL;///< Used to store the <= 64 bits integer value.
1911uint64_t *pVal;///< Used to store the >64 bits integer value.
1912 } U;
1913
1914unsignedBitWidth = 1;///< The number of bits in this APInt.
1915
1916friendstructDenseMapInfo<APInt, void>;
1917friendclassAPSInt;
1918
1919// Make DynamicAPInt a friend so it can access BitWidth directly.
1920friendDynamicAPInt;
1921
1922 /// This constructor is used only internally for speed of construction of
1923 /// temporaries. It is unsafe since it takes ownership of the pointer, so it
1924 /// is not public.
1925APInt(uint64_t *val,unsigned bits) :BitWidth(bits) { U.pVal = val; }
1926
1927 /// Determine which word a bit is in.
1928 ///
1929 /// \returns the word position for the specified bit position.
1930staticunsigned whichWord(unsigned bitPosition) {
1931return bitPosition / APINT_BITS_PER_WORD;
1932 }
1933
1934 /// Determine which bit in a word the specified bit position is in.
1935staticunsigned whichBit(unsigned bitPosition) {
1936return bitPosition % APINT_BITS_PER_WORD;
1937 }
1938
1939 /// Get a single bit mask.
1940 ///
1941 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
1942 /// This method generates and returns a uint64_t (word) mask for a single
1943 /// bit at a specific bit position. This is used to mask the bit in the
1944 /// corresponding word.
1945staticuint64_t maskBit(unsigned bitPosition) {
1946return 1ULL << whichBit(bitPosition);
1947 }
1948
1949 /// Clear unused high order bits
1950 ///
1951 /// This method is used internally to clear the top "N" bits in the high order
1952 /// word that are not used by the APInt. This is needed after the most
1953 /// significant word is assigned a value to ensure that those bits are
1954 /// zero'd out.
1955 APInt &clearUnusedBits() {
1956// Compute how many bits are used in the final word.
1957unsigned WordBits = ((BitWidth - 1) % APINT_BITS_PER_WORD) + 1;
1958
1959// Mask out the high bits.
1960uint64_tmask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
1961if (LLVM_UNLIKELY(BitWidth == 0))
1962 mask = 0;
1963
1964if (isSingleWord())
1965U.VAL &= mask;
1966else
1967U.pVal[getNumWords() - 1] &=mask;
1968return *this;
1969 }
1970
1971 /// Get the word corresponding to a bit position
1972 /// \returns the corresponding word for the specified bit position.
1973uint64_t getWord(unsigned bitPosition) const{
1974return isSingleWord() ?U.VAL :U.pVal[whichWord(bitPosition)];
1975 }
1976
1977 /// Utility method to change the bit width of this APInt to new bit width,
1978 /// allocating and/or deallocating as necessary. There is no guarantee on the
1979 /// value of any bits upon return. Caller should populate the bits after.
1980void reallocate(unsigned NewBitWidth);
1981
1982 /// Convert a char array into an APInt
1983 ///
1984 /// \param radix 2, 8, 10, 16, or 36
1985 /// Converts a string into a number. The string must be non-empty
1986 /// and well-formed as a number of the given base. The bit-width
1987 /// must be sufficient to hold the result.
1988 ///
1989 /// This is used by the constructors that take string arguments.
1990 ///
1991 /// StringRef::getAsInteger is superficially similar but (1) does
1992 /// not assume that the string is well-formed and (2) grows the
1993 /// result to hold the input.
1994voidfromString(unsigned numBits, StringRef str,uint8_t radix);
1995
1996 /// An internal division function for dividing APInts.
1997 ///
1998 /// This is used by the toString method to divide by the radix. It simply
1999 /// provides a more convenient form of divide for internal use since KnuthDiv
2000 /// has specific constraints on its inputs. If those constraints are not met
2001 /// then it provides a simpler form of divide.
2002staticvoid divide(const WordType *LHS,unsigned lhsWords,
2003const WordType *RHS,unsigned rhsWords, WordType *Quotient,
2004 WordType *Remainder);
2005
2006 /// out-of-line slow case for inline constructor
2007void initSlowCase(uint64_t val,boolisSigned);
2008
2009 /// shared code between two array constructors
2010void initFromArray(ArrayRef<uint64_t> array);
2011
2012 /// out-of-line slow case for inline copy constructor
2013void initSlowCase(const APInt &that);
2014
2015 /// out-of-line slow case for shl
2016void shlSlowCase(unsigned ShiftAmt);
2017
2018 /// out-of-line slow case for lshr.
2019void lshrSlowCase(unsigned ShiftAmt);
2020
2021 /// out-of-line slow case for ashr.
2022void ashrSlowCase(unsigned ShiftAmt);
2023
2024 /// out-of-line slow case for operator=
2025void assignSlowCase(const APInt &RHS);
2026
2027 /// out-of-line slow case for operator==
2028bool equalSlowCase(const APInt &RHS)constLLVM_READONLY;
2029
2030 /// out-of-line slow case for countLeadingZeros
2031unsigned countLeadingZerosSlowCase()constLLVM_READONLY;
2032
2033 /// out-of-line slow case for countLeadingOnes.
2034unsigned countLeadingOnesSlowCase()constLLVM_READONLY;
2035
2036 /// out-of-line slow case for countTrailingZeros.
2037unsigned countTrailingZerosSlowCase()constLLVM_READONLY;
2038
2039 /// out-of-line slow case for countTrailingOnes
2040unsigned countTrailingOnesSlowCase()constLLVM_READONLY;
2041
2042 /// out-of-line slow case for countPopulation
2043unsigned countPopulationSlowCase()constLLVM_READONLY;
2044
2045 /// out-of-line slow case for intersects.
2046bool intersectsSlowCase(const APInt &RHS)constLLVM_READONLY;
2047
2048 /// out-of-line slow case for isSubsetOf.
2049bool isSubsetOfSlowCase(const APInt &RHS)constLLVM_READONLY;
2050
2051 /// out-of-line slow case for setBits.
2052void setBitsSlowCase(unsigned loBit,unsigned hiBit);
2053
2054 /// out-of-line slow case for flipAllBits.
2055void flipAllBitsSlowCase();
2056
2057 /// out-of-line slow case for concat.
2058 APInt concatSlowCase(const APInt &NewLSB)const;
2059
2060 /// out-of-line slow case for operator&=.
2061void andAssignSlowCase(const APInt &RHS);
2062
2063 /// out-of-line slow case for operator|=.
2064void orAssignSlowCase(const APInt &RHS);
2065
2066 /// out-of-line slow case for operator^=.
2067void xorAssignSlowCase(const APInt &RHS);
2068
2069 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2070 /// to, or greater than RHS.
2071int compare(const APInt &RHS)constLLVM_READONLY;
2072
2073 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
2074 /// to, or greater than RHS.
2075int compareSigned(const APInt &RHS)constLLVM_READONLY;
2076
2077 /// @}
2078};
2079
2080inlinebool operator==(uint64_t V1,constAPInt &V2) {return V2 == V1; }
2081
2082inlinebooloperator!=(uint64_t V1,constAPInt &V2) {return V2 != V1; }
2083
2084/// Unary bitwise complement operator.
2085///
2086/// \returns an APInt that is the bitwise complement of \p v.
2087inlineAPIntoperator~(APInt v) {
2088 v.flipAllBits();
2089return v;
2090}
2091
2092inlineAPIntoperator&(APInt a,constAPInt &b) {
2093 a &= b;
2094return a;
2095}
2096
2097inlineAPIntoperator&(constAPInt &a,APInt &&b) {
2098 b &= a;
2099return std::move(b);
2100}
2101
2102inlineAPIntoperator&(APInt a,uint64_tRHS) {
2103 a &=RHS;
2104return a;
2105}
2106
2107inlineAPIntoperator&(uint64_tLHS,APInt b) {
2108 b &=LHS;
2109return b;
2110}
2111
2112inlineAPIntoperator|(APInt a,constAPInt &b) {
2113 a |= b;
2114return a;
2115}
2116
2117inlineAPIntoperator|(constAPInt &a,APInt &&b) {
2118 b |= a;
2119return std::move(b);
2120}
2121
2122inlineAPIntoperator|(APInt a,uint64_tRHS) {
2123 a |=RHS;
2124return a;
2125}
2126
2127inlineAPIntoperator|(uint64_tLHS,APInt b) {
2128 b |=LHS;
2129return b;
2130}
2131
2132inlineAPIntoperator^(APInt a,constAPInt &b) {
2133 a ^= b;
2134return a;
2135}
2136
2137inlineAPIntoperator^(constAPInt &a,APInt &&b) {
2138 b ^= a;
2139return std::move(b);
2140}
2141
2142inlineAPIntoperator^(APInt a,uint64_tRHS) {
2143 a ^=RHS;
2144return a;
2145}
2146
2147inlineAPIntoperator^(uint64_tLHS,APInt b) {
2148 b ^=LHS;
2149return b;
2150}
2151
2152inlineraw_ostream &operator<<(raw_ostream &OS,constAPInt &I) {
2153I.print(OS,true);
2154returnOS;
2155}
2156
2157inlineAPIntoperator-(APInt v) {
2158 v.negate();
2159return v;
2160}
2161
2162inlineAPIntoperator+(APInt a,constAPInt &b) {
2163 a += b;
2164return a;
2165}
2166
2167inlineAPIntoperator+(constAPInt &a,APInt &&b) {
2168 b += a;
2169return std::move(b);
2170}
2171
2172inlineAPIntoperator+(APInt a,uint64_tRHS) {
2173 a +=RHS;
2174return a;
2175}
2176
2177inlineAPIntoperator+(uint64_tLHS,APInt b) {
2178 b +=LHS;
2179return b;
2180}
2181
2182inlineAPIntoperator-(APInt a,constAPInt &b) {
2183 a -= b;
2184return a;
2185}
2186
2187inlineAPIntoperator-(constAPInt &a,APInt &&b) {
2188 b.negate();
2189 b += a;
2190return std::move(b);
2191}
2192
2193inlineAPIntoperator-(APInt a,uint64_tRHS) {
2194 a -=RHS;
2195return a;
2196}
2197
2198inlineAPIntoperator-(uint64_tLHS,APInt b) {
2199 b.negate();
2200 b +=LHS;
2201return b;
2202}
2203
2204inlineAPIntoperator*(APInt a,uint64_tRHS) {
2205 a *=RHS;
2206return a;
2207}
2208
2209inlineAPIntoperator*(uint64_tLHS,APInt b) {
2210 b *=LHS;
2211return b;
2212}
2213
2214namespaceAPIntOps {
2215
2216/// Determine the smaller of two APInts considered to be signed.
2217inlineconstAPInt &smin(constAPInt &A,constAPInt &B) {
2218returnA.slt(B) ?A :B;
2219}
2220
2221/// Determine the larger of two APInts considered to be signed.
2222inlineconstAPInt &smax(constAPInt &A,constAPInt &B) {
2223returnA.sgt(B) ?A :B;
2224}
2225
2226/// Determine the smaller of two APInts considered to be unsigned.
2227inlineconstAPInt &umin(constAPInt &A,constAPInt &B) {
2228returnA.ult(B) ?A :B;
2229}
2230
2231/// Determine the larger of two APInts considered to be unsigned.
2232inlineconstAPInt &umax(constAPInt &A,constAPInt &B) {
2233returnA.ugt(B) ?A :B;
2234}
2235
2236/// Determine the absolute difference of two APInts considered to be signed.
2237inlineconstAPIntabds(constAPInt &A,constAPInt &B) {
2238returnA.sge(B) ? (A -B) : (B -A);
2239}
2240
2241/// Determine the absolute difference of two APInts considered to be unsigned.
2242inlineconstAPIntabdu(constAPInt &A,constAPInt &B) {
2243returnA.uge(B) ? (A -B) : (B -A);
2244}
2245
2246/// Compute the floor of the signed average of C1 and C2
2247APInt avgFloorS(constAPInt &C1,constAPInt &C2);
2248
2249/// Compute the floor of the unsigned average of C1 and C2
2250APInt avgFloorU(constAPInt &C1,constAPInt &C2);
2251
2252/// Compute the ceil of the signed average of C1 and C2
2253APInt avgCeilS(constAPInt &C1,constAPInt &C2);
2254
2255/// Compute the ceil of the unsigned average of C1 and C2
2256APInt avgCeilU(constAPInt &C1,constAPInt &C2);
2257
2258/// Performs (2*N)-bit multiplication on sign-extended operands.
2259/// Returns the high N bits of the multiplication result.
2260APInt mulhs(constAPInt &C1,constAPInt &C2);
2261
2262/// Performs (2*N)-bit multiplication on zero-extended operands.
2263/// Returns the high N bits of the multiplication result.
2264APInt mulhu(constAPInt &C1,constAPInt &C2);
2265
2266/// Compute X^N for N>=0.
2267/// 0^0 is supported and returns 1.
2268APInt pow(constAPInt &X, int64_tN);
2269
2270/// Compute GCD of two unsigned APInt values.
2271///
2272/// This function returns the greatest common divisor of the two APInt values
2273/// using Stein's algorithm.
2274///
2275/// \returns the greatest common divisor of A and B.
2276APInt GreatestCommonDivisor(APIntA,APIntB);
2277
2278/// Converts the given APInt to a double value.
2279///
2280/// Treats the APInt as an unsigned value for conversion purposes.
2281inlinedoubleRoundAPIntToDouble(constAPInt &APIVal) {
2282return APIVal.roundToDouble();
2283}
2284
2285/// Converts the given APInt to a double value.
2286///
2287/// Treats the APInt as a signed value for conversion purposes.
2288inlinedoubleRoundSignedAPIntToDouble(constAPInt &APIVal) {
2289return APIVal.signedRoundToDouble();
2290}
2291
2292/// Converts the given APInt to a float value.
2293inlinefloatRoundAPIntToFloat(constAPInt &APIVal) {
2294return float(RoundAPIntToDouble(APIVal));
2295}
2296
2297/// Converts the given APInt to a float value.
2298///
2299/// Treats the APInt as a signed value for conversion purposes.
2300inlinefloatRoundSignedAPIntToFloat(constAPInt &APIVal) {
2301return float(APIVal.signedRoundToDouble());
2302}
2303
2304/// Converts the given double value into a APInt.
2305///
2306/// This function convert a double value to an APInt value.
2307APInt RoundDoubleToAPInt(double Double,unsigned width);
2308
2309/// Converts a float value into a APInt.
2310///
2311/// Converts a float value into an APInt value.
2312inlineAPIntRoundFloatToAPInt(floatFloat,unsigned width) {
2313returnRoundDoubleToAPInt(double(Float), width);
2314}
2315
2316/// Return A unsign-divided by B, rounded by the given rounding mode.
2317APInt RoundingUDiv(constAPInt &A,constAPInt &B,APInt::Rounding RM);
2318
2319/// Return A sign-divided by B, rounded by the given rounding mode.
2320APInt RoundingSDiv(constAPInt &A,constAPInt &B,APInt::Rounding RM);
2321
2322/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2323/// (e.g. 32 for i32).
2324/// This function finds the smallest number n, such that
2325/// (a) n >= 0 and q(n) = 0, or
2326/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2327/// integers, belong to two different intervals [Rk, Rk+R),
2328/// where R = 2^BW, and k is an integer.
2329/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2330/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2331/// subtraction (treated as addition of negated numbers) would always
2332/// count as an overflow, but here we want to allow values to decrease
2333/// and increase as long as they are within the same interval.
2334/// Specifically, adding of two negative numbers should not cause an
2335/// overflow (as long as the magnitude does not exceed the bit width).
2336/// On the other hand, given a positive number, adding a negative
2337/// number to it can give a negative result, which would cause the
2338/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2339/// treated as a special case of an overflow.
2340///
2341/// This function returns std::nullopt if after finding k that minimizes the
2342/// positive solution to q(n) = kR, both solutions are contained between
2343/// two consecutive integers.
2344///
2345/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2346/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2347/// virtue of *signed* overflow. This function will *not* find such an n,
2348/// however it may find a value of n satisfying the inequalities due to
2349/// an *unsigned* overflow (if the values are treated as unsigned).
2350/// To find a solution for a signed overflow, treat it as a problem of
2351/// finding an unsigned overflow with a range with of BW-1.
2352///
2353/// The returned value may have a different bit width from the input
2354/// coefficients.
2355std::optional<APInt> SolveQuadraticEquationWrap(APIntA,APIntB,APIntC,
2356unsigned RangeWidth);
2357
2358/// Compare two values, and if they are different, return the position of the
2359/// most significant bit that is different in the values.
2360std::optional<unsigned> GetMostSignificantDifferentBit(constAPInt &A,
2361constAPInt &B);
2362
2363/// Splat/Merge neighboring bits to widen/narrow the bitmask represented
2364/// by \param A to \param NewBitWidth bits.
2365///
2366/// MatchAnyBits: (Default)
2367/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2368/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0111
2369///
2370/// MatchAllBits:
2371/// e.g. ScaleBitMask(0b0101, 8) -> 0b00110011
2372/// e.g. ScaleBitMask(0b00011011, 4) -> 0b0001
2373/// A.getBitwidth() or NewBitWidth must be a whole multiples of the other.
2374APInt ScaleBitMask(constAPInt &A,unsigned NewBitWidth,
2375bool MatchAllBits =false);
2376}// namespace APIntOps
2377
2378// See friend declaration above. This additional declaration is required in
2379// order to compile LLVM with IBM xlC compiler.
2380hash_code hash_value(const APInt &Arg);
2381
2382/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2383/// with the integer held in IntVal.
2384void StoreIntToMemory(const APInt &IntVal,uint8_t *Dst,unsigned StoreBytes);
2385
2386/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2387/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2388void LoadIntFromMemory(APInt &IntVal,constuint8_t *Src,unsigned LoadBytes);
2389
2390/// Provide DenseMapInfo for APInt.
2391template <>structDenseMapInfo<APInt, void> {
2392staticinlineAPIntgetEmptyKey() {
2393APInt V(nullptr, 0);
2394 V.U.VAL = ~0ULL;
2395return V;
2396 }
2397
2398staticinlineAPIntgetTombstoneKey() {
2399APInt V(nullptr, 0);
2400 V.U.VAL = ~1ULL;
2401return V;
2402 }
2403
2404staticunsignedgetHashValue(constAPInt &Key);
2405
2406staticboolisEqual(constAPInt &LHS,constAPInt &RHS) {
2407returnLHS.getBitWidth() ==RHS.getBitWidth() &&LHS ==RHS;
2408 }
2409};
2410
2411}// namespace llvm
2412
2413#endif
const
aarch64 promote const
Definition:AArch64PromoteConstant.cpp:230
inline
always inline
Definition:AlwaysInliner.cpp:161
print
static void print(raw_ostream &Out, object::Archive::Kind Kind, T Val)
Definition:ArchiveWriter.cpp:205
B
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
A
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
C
static GCRegistry::Add< ShadowStackGC > C("shadow-stack", "Very portable GC for uncooperative code generators")
operator<<
raw_ostream & operator<<(raw_ostream &OS, const binary_le_impl< value_type > &BLE)
Definition:COFFEmitter.cpp:308
Compiler.h
LLVM_UNLIKELY
#define LLVM_UNLIKELY(EXPR)
Definition:Compiler.h:320
LLVM_READONLY
#define LLVM_READONLY
Definition:Compiler.h:306
Align
uint64_t Align
Definition:ELFObjHandler.cpp:82
X
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
isSigned
static bool isSigned(unsigned int Opcode)
Definition:ExpandLargeDivRem.cpp:52
extractBits
static KnownBits extractBits(unsigned BitWidth, const KnownBits &SrcOpKnown, const KnownBits &OffsetKnown, const KnownBits &WidthKnown)
Definition:GISelKnownBits.cpp:132
isZero
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT, AssumptionCache *AC)
Definition:Lint.cpp:557
isAligned
static bool isAligned(const Value *Base, Align Alignment, const DataLayout &DL)
Definition:Loads.cpp:31
isSplat
static bool isSplat(Value *V)
Return true if V is a splat of a value (which is used when multiplying a matrix with a scalar).
Definition:LowerMatrixIntrinsics.cpp:102
I
#define I(x, y, z)
Definition:MD5.cpp:58
toString
static const char * toString(MIToken::TokenKind TokenKind)
Definition:MIParser.cpp:625
Profile
Load MIR Sample Profile
Definition:MIRSampleProfile.cpp:78
MathExtras.h
Signed
@ Signed
Definition:NVPTXISelLowering.cpp:4789
BitWidth
const uint64_t BitWidth
Definition:NVVMIntrRange.cpp:55
clearUnusedBits
static uint64_t clearUnusedBits(uint64_t Val, unsigned Size)
Definition:SIISelLowering.cpp:16024
assert
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Float
@ Float
Definition:SPIRVEmitNonSemanticDI.cpp:70
OS
raw_pwrite_stream & OS
Definition:SampleProfWriter.cpp:51
umul_ov
static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow)
Definition:ScalarEvolution.cpp:3051
getBitWidth
static unsigned getBitWidth(Type *Ty, const DataLayout &DL)
Returns the bitwidth of the given scalar or pointer type.
Definition:ValueTracking.cpp:93
RHS
Value * RHS
Definition:X86PartialReduction.cpp:74
LHS
Value * LHS
Definition:X86PartialReduction.cpp:73
llvm::APInt
Class for arbitrary precision integers.
Definition:APInt.h:78
llvm::APInt::tryZExtValue
std::optional< uint64_t > tryZExtValue() const
Get zero extended value if possible.
Definition:APInt.h:1532
llvm::APInt::getAllOnes
static APInt getAllOnes(unsigned numBits)
Return an APInt of a specified width with all bits set.
Definition:APInt.h:234
llvm::APInt::slt
bool slt(int64_t RHS) const
Signed less than comparison.
Definition:APInt.h:1138
llvm::APInt::clearBit
void clearBit(unsigned BitPosition)
Set a given bit to 0.
Definition:APInt.h:1407
llvm::APInt::relativeLShr
APInt relativeLShr(int RelativeShift) const
relative logical shift right
Definition:APInt.h:880
llvm::APInt::isNegatedPowerOf2
bool isNegatedPowerOf2() const
Check if this APInt's negated value is a power of two greater than zero.
Definition:APInt.h:449
llvm::APInt::zext
APInt zext(unsigned width) const
Zero extend to a new width.
Definition:APInt.cpp:986
llvm::APInt::getSignMask
static APInt getSignMask(unsigned BitWidth)
Get the SignMask for a specific bit width.
Definition:APInt.h:229
llvm::APInt::isMinSignedValue
bool isMinSignedValue() const
Determine if this is the smallest signed value.
Definition:APInt.h:423
llvm::APInt::operator--
APInt operator--(int)
Postfix decrement operator.
Definition:APInt.h:596
llvm::APInt::getZExtValue
uint64_t getZExtValue() const
Get zero extended value.
Definition:APInt.h:1520
llvm::APInt::pVal
uint64_t * pVal
Used to store the >64 bits integer value.
Definition:APInt.h:1911
llvm::APInt::setHighBits
void setHighBits(unsigned hiBits)
Set the top hiBits bits.
Definition:APInt.h:1392
llvm::APInt::popcount
unsigned popcount() const
Count the number of bits set.
Definition:APInt.h:1649
llvm::APInt::~APInt
~APInt()
Destructor.
Definition:APInt.h:190
llvm::APInt::setBitsFrom
void setBitsFrom(unsigned loBit)
Set the top bits starting from loBit.
Definition:APInt.h:1386
llvm::APInt::operator<<
APInt operator<<(const APInt &Bits) const
Left logical shift operator.
Definition:APInt.h:822
llvm::APInt::isMask
bool isMask() const
Definition:APInt.h:501
llvm::APInt::operator<<
APInt operator<<(unsigned Bits) const
Left logical shift operator.
Definition:APInt.h:817
llvm::APInt::getActiveBits
unsigned getActiveBits() const
Compute the number of active bits in the value.
Definition:APInt.h:1492
llvm::APInt::sgt
bool sgt(int64_t RHS) const
Signed greater than comparison.
Definition:APInt.h:1209
llvm::APInt::getMaxValue
static APInt getMaxValue(unsigned numBits)
Gets maximum unsigned value of APInt for specific bit width.
Definition:APInt.h:206
llvm::APInt::setBit
void setBit(unsigned BitPosition)
Set the given bit to 1 whose position is given as "bitPosition".
Definition:APInt.h:1330
llvm::APInt::operator[]
bool operator[](unsigned bitPosition) const
Array-indexing support.
Definition:APInt.h:1043
llvm::APInt::operator!=
bool operator!=(const APInt &RHS) const
Inequality operator.
Definition:APInt.h:1087
llvm::APInt::toStringUnsigned
void toStringUnsigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be unsigned and converts it into a string in the radix given.
Definition:APInt.h:1669
llvm::APInt::operator&=
APInt & operator&=(const APInt &RHS)
Bitwise AND assignment operator.
Definition:APInt.h:674
llvm::APInt::abs
APInt abs() const
Get the absolute value.
Definition:APInt.h:1773
llvm::APInt::ceilLogBase2
unsigned ceilLogBase2() const
Definition:APInt.h:1742
llvm::APInt::Rounding
Rounding
Definition:APInt.h:88
llvm::APInt::countLeadingOnes
unsigned countLeadingOnes() const
Definition:APInt.h:1603
llvm::APInt::relativeLShl
APInt relativeLShl(int RelativeShift) const
relative logical shift left
Definition:APInt.h:885
llvm::APInt::operator=
APInt & operator=(const APInt &RHS)
Copy assignment operator.
Definition:APInt.h:618
llvm::APInt::sgt
bool sgt(const APInt &RHS) const
Signed greater than comparison.
Definition:APInt.h:1201
llvm::APInt::isAllOnes
bool isAllOnes() const
Determine if all bits are set. This is true for zero-width values.
Definition:APInt.h:371
llvm::APInt::APInt
APInt(unsigned numBits, uint64_t val, bool isSigned=false, bool implicitTrunc=false)
Create a new APInt of numBits width, initialized as val.
Definition:APInt.h:111
llvm::APInt::operator^=
APInt & operator^=(uint64_t RHS)
Bitwise XOR assignment operator.
Definition:APInt.h:747
llvm::APInt::ugt
bool ugt(const APInt &RHS) const
Unsigned greater than comparison.
Definition:APInt.h:1182
llvm::APInt::getBitsSet
static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit)
Get a value with a block of bits set.
Definition:APInt.h:258
llvm::APInt::isZero
bool isZero() const
Determine if this value is zero, i.e. all bits are clear.
Definition:APInt.h:380
llvm::APInt::operator|=
APInt & operator|=(uint64_t RHS)
Bitwise OR assignment operator.
Definition:APInt.h:718
llvm::APInt::isSignMask
bool isSignMask() const
Check if the APInt's value is returned by getSignMask.
Definition:APInt.h:466
llvm::APInt::floatToBits
static APInt floatToBits(float V)
Converts a float to APInt bits.
Definition:APInt.h:1730
llvm::APInt::setSignBit
void setSignBit()
Set the sign bit to 1.
Definition:APInt.h:1340
llvm::APInt::getBitWidth
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition:APInt.h:1468
llvm::APInt::WordType
uint64_t WordType
Definition:APInt.h:80
llvm::APInt::sle
bool sle(uint64_t RHS) const
Signed less or equal comparison.
Definition:APInt.h:1174
llvm::APInt::ult
bool ult(const APInt &RHS) const
Unsigned less than comparison.
Definition:APInt.h:1111
llvm::APInt::uge
bool uge(uint64_t RHS) const
Unsigned greater or equal comparison.
Definition:APInt.h:1229
llvm::APInt::operator!
bool operator!() const
Logical negation operation on this APInt returns true if zero, like normal integers.
Definition:APInt.h:609
llvm::APInt::getSignedMaxValue
static APInt getSignedMaxValue(unsigned numBits)
Gets maximum signed value of APInt for a specific bit width.
Definition:APInt.h:209
llvm::APInt::operator=
APInt & operator=(uint64_t RHS)
Assignment operator.
Definition:APInt.h:658
llvm::APInt::relativeAShr
APInt relativeAShr(int RelativeShift) const
relative arithmetic shift right
Definition:APInt.h:890
llvm::APInt::hash_value
friend hash_code hash_value(const APInt &Arg)
Overload to compute a hash_code for an APInt value.
llvm::APInt::APInt
APInt(const APInt &that)
Copy Constructor.
Definition:APInt.h:176
llvm::APInt::operator|=
APInt & operator|=(const APInt &RHS)
Bitwise OR assignment operator.
Definition:APInt.h:704
llvm::APInt::isSingleWord
bool isSingleWord() const
Determine if this APInt just has one word to store value.
Definition:APInt.h:322
llvm::APInt::operator==
bool operator==(uint64_t Val) const
Equality operator.
Definition:APInt.h:1069
llvm::APInt::operator++
APInt operator++(int)
Postfix increment operator.
Definition:APInt.h:582
llvm::APInt::getNumWords
unsigned getNumWords() const
Get the number of words.
Definition:APInt.h:1475
llvm::APInt::isMinValue
bool isMinValue() const
Determine if this is the smallest unsigned value.
Definition:APInt.h:417
llvm::APInt::ashr
APInt ashr(const APInt &ShiftAmt) const
Arithmetic right-shift function.
Definition:APInt.h:908
llvm::APInt::APInt
APInt()
Default constructor that creates an APInt with a 1-bit zero value.
Definition:APInt.h:173
llvm::APInt::getMinValue
static APInt getMinValue(unsigned numBits)
Gets minimum unsigned value of APInt for a specific bit width.
Definition:APInt.h:216
llvm::APInt::APInt
APInt(APInt &&that)
Move Constructor.
Definition:APInt.h:184
llvm::APInt::isNegative
bool isNegative() const
Determine sign of this APInt.
Definition:APInt.h:329
llvm::APInt::concat
APInt concat(const APInt &NewLSB) const
Concatenate the bits from "NewLSB" onto the bottom of *this.
Definition:APInt.h:947
llvm::APInt::intersects
bool intersects(const APInt &RHS) const
This operation tests if there are any pairs of corresponding bits between this APInt and RHS that are...
Definition:APInt.h:1249
llvm::APInt::eq
bool eq(const APInt &RHS) const
Equality comparison.
Definition:APInt.h:1079
llvm::APInt::exactLogBase2
int32_t exactLogBase2() const
Definition:APInt.h:1761
llvm::APInt::operator<<=
APInt & operator<<=(unsigned ShiftAmt)
Left-shift assignment function.
Definition:APInt.h:785
llvm::APInt::roundToDouble
double roundToDouble() const
Converts this unsigned APInt to a double value.
Definition:APInt.h:1690
llvm::APInt::clearAllBits
void clearAllBits()
Set every bit to 0.
Definition:APInt.h:1397
llvm::APInt::relativeAShl
APInt relativeAShl(int RelativeShift) const
relative arithmetic shift left
Definition:APInt.h:895
llvm::APInt::ashrInPlace
void ashrInPlace(unsigned ShiftAmt)
Arithmetic right-shift this APInt by ShiftAmt in place.
Definition:APInt.h:834
llvm::APInt::sle
bool sle(const APInt &RHS) const
Signed less or equal comparison.
Definition:APInt.h:1166
llvm::APInt::negate
void negate()
Negate this APInt in place.
Definition:APInt.h:1450
llvm::APInt::tcDecrement
static WordType tcDecrement(WordType *dst, unsigned parts)
Decrement a bignum in-place. Return the borrow flag.
Definition:APInt.h:1892
llvm::APInt::countr_zero
unsigned countr_zero() const
Count the number of trailing zero bits.
Definition:APInt.h:1618
llvm::APInt::isSignedIntN
bool isSignedIntN(unsigned N) const
Check if this APInt has an N-bits signed integer value.
Definition:APInt.h:435
llvm::APInt::getNumSignBits
unsigned getNumSignBits() const
Computes the number of leading bits of this APInt that are equal to its sign bit.
Definition:APInt.h:1607
llvm::APInt::isOneBitSet
bool isOneBitSet(unsigned BitNo) const
Determine if this APInt Value only has the specified bit set.
Definition:APInt.h:366
llvm::APInt::countl_zero
unsigned countl_zero() const
The APInt version of std::countl_zero.
Definition:APInt.h:1577
llvm::APInt::operator==
bool operator==(const APInt &RHS) const
Equality operator.
Definition:APInt.h:1056
llvm::APInt::shl
APInt shl(const APInt &ShiftAmt) const
Left-shift function.
Definition:APInt.h:932
llvm::APInt::getSignedMinValue
static APInt getSignedMinValue(unsigned numBits)
Gets minimum signed value of APInt for a specific bit width.
Definition:APInt.h:219
llvm::APInt::isShiftedMask
bool isShiftedMask(unsigned &MaskIdx, unsigned &MaskLen) const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
Definition:APInt.h:522
llvm::APInt::setBitsWithWrap
void setBitsWithWrap(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition:APInt.h:1354
llvm::APInt::lshr
APInt lshr(const APInt &ShiftAmt) const
Logical right-shift function.
Definition:APInt.h:920
llvm::APInt::isNonPositive
bool isNonPositive() const
Determine if this APInt Value is non-positive (<= 0).
Definition:APInt.h:361
llvm::APInt::countTrailingZeros
unsigned countTrailingZeros() const
Definition:APInt.h:1626
llvm::APInt::getSignificantBits
unsigned getSignificantBits() const
Get the minimum bit size for this signed APInt.
Definition:APInt.h:1511
llvm::APInt::countLeadingZeros
unsigned countLeadingZeros() const
Definition:APInt.h:1585
llvm::APInt::isStrictlyPositive
bool isStrictlyPositive() const
Determine if this APInt Value is positive.
Definition:APInt.h:356
llvm::APInt::flipAllBits
void flipAllBits()
Toggle every bit to its opposite value.
Definition:APInt.h:1434
llvm::APInt::getNumWords
static unsigned getNumWords(unsigned BitWidth)
Get the number of words.
Definition:APInt.h:1483
llvm::APInt::needsCleanup
bool needsCleanup() const
Returns whether this instance allocated memory.
Definition:APInt.h:1904
llvm::APInt::countl_one
unsigned countl_one() const
Count the number of leading one bits.
Definition:APInt.h:1594
llvm::APInt::clearLowBits
void clearLowBits(unsigned loBits)
Set bottom loBits bits to 0.
Definition:APInt.h:1417
llvm::APInt::logBase2
unsigned logBase2() const
Definition:APInt.h:1739
llvm::APInt::getZeroWidth
static APInt getZeroWidth()
Return an APInt zero bits wide.
Definition:APInt.h:203
llvm::APInt::signedRoundToDouble
double signedRoundToDouble() const
Converts this signed APInt to a double value.
Definition:APInt.h:1693
llvm::APInt::isShiftedMask
bool isShiftedMask() const
Return true if this APInt value contains a non-empty sequence of ones with the remainder zero.
Definition:APInt.h:510
llvm::APInt::bitsToFloat
float bitsToFloat() const
Converts APInt bits to a float.
Definition:APInt.h:1714
llvm::APInt::getLimitedValue
uint64_t getLimitedValue(uint64_t Limit=UINT64_MAX) const
If this value is smaller than the specified limit, return it, otherwise return the limit value.
Definition:APInt.h:475
llvm::APInt::ule
bool ule(uint64_t RHS) const
Unsigned less or equal comparison.
Definition:APInt.h:1158
llvm::APInt::ashr
APInt ashr(unsigned ShiftAmt) const
Arithmetic right-shift function.
Definition:APInt.h:827
llvm::APInt::setAllBits
void setAllBits()
Set every bit to 1.
Definition:APInt.h:1319
llvm::APInt::VAL
uint64_t VAL
Used to store the <= 64 bits integer value.
Definition:APInt.h:1910
llvm::APInt::ugt
bool ugt(uint64_t RHS) const
Unsigned greater than comparison.
Definition:APInt.h:1190
llvm::APInt::sge
bool sge(int64_t RHS) const
Signed greater or equal comparison.
Definition:APInt.h:1245
llvm::APInt::getBoolValue
bool getBoolValue() const
Convert APInt to a boolean value.
Definition:APInt.h:471
llvm::APInt::doubleToBits
static APInt doubleToBits(double V)
Converts a double to APInt bits.
Definition:APInt.h:1722
llvm::APInt::isMask
bool isMask(unsigned numBits) const
Definition:APInt.h:488
llvm::APInt::operator=
APInt & operator=(APInt &&that)
Move assignment operator.
Definition:APInt.h:632
llvm::APInt::tcIncrement
static WordType tcIncrement(WordType *dst, unsigned parts)
Increment a bignum in-place. Return the carry flag.
Definition:APInt.h:1887
llvm::APInt::operator^=
APInt & operator^=(const APInt &RHS)
Bitwise XOR assignment operator.
Definition:APInt.h:733
llvm::APInt::isMaxSignedValue
bool isMaxSignedValue() const
Determine if this is the largest signed value.
Definition:APInt.h:405
llvm::APInt::isNonNegative
bool isNonNegative() const
Determine if this APInt Value is non-negative (>= 0)
Definition:APInt.h:334
llvm::APInt::ule
bool ule(const APInt &RHS) const
Unsigned less or equal comparison.
Definition:APInt.h:1150
llvm::APInt::setBits
void setBits(unsigned loBit, unsigned hiBit)
Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
Definition:APInt.h:1367
llvm::APInt::shl
APInt shl(unsigned shiftAmt) const
Left-shift function.
Definition:APInt.h:873
llvm::APInt::bitsToDouble
double bitsToDouble() const
Converts APInt bits to a double.
Definition:APInt.h:1700
llvm::APInt::isSubsetOf
bool isSubsetOf(const APInt &RHS) const
This operation checks that all bits set in this APInt are also set in RHS.
Definition:APInt.h:1257
llvm::APInt::isPowerOf2
bool isPowerOf2() const
Check if this APInt's value is a power of two greater than zero.
Definition:APInt.h:440
llvm::APInt::getActiveWords
unsigned getActiveWords() const
Compute the number of active words in the value of this APInt.
Definition:APInt.h:1498
llvm::APInt::ne
bool ne(const APInt &RHS) const
Inequality comparison.
Definition:APInt.h:1103
llvm::APInt::isSameValue
static bool isSameValue(const APInt &I1, const APInt &I2)
Determine if two APInts have the same value, after zero-extending one of them (if needed!...
Definition:APInt.h:553
llvm::APInt::getLowBitsSet
static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet)
Constructs an APInt value that has the bottom loBitsSet bits set.
Definition:APInt.h:306
llvm::APInt::isSignBitSet
bool isSignBitSet() const
Determine if sign bit of this APInt is set.
Definition:APInt.h:341
llvm::APInt::getRawData
const uint64_t * getRawData() const
This function returns a pointer to the internal storage of the APInt.
Definition:APInt.h:569
llvm::APInt::slt
bool slt(const APInt &RHS) const
Signed less than comparison.
Definition:APInt.h:1130
llvm::APInt::getHighBitsSet
static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet)
Constructs an APInt value that has the top hiBitsSet bits set.
Definition:APInt.h:296
llvm::APInt::getZero
static APInt getZero(unsigned numBits)
Get the '0' value for the specified bit-width.
Definition:APInt.h:200
llvm::APInt::setLowBits
void setLowBits(unsigned loBits)
Set the bottom loBits bits.
Definition:APInt.h:1389
llvm::APInt::isIntN
bool isIntN(unsigned N) const
Check if this APInt has an N-bits unsigned integer value.
Definition:APInt.h:432
llvm::APInt::countTrailingOnes
unsigned countTrailingOnes() const
Definition:APInt.h:1641
llvm::APInt::sge
bool sge(const APInt &RHS) const
Signed greater or equal comparison.
Definition:APInt.h:1237
llvm::APInt::trySExtValue
std::optional< int64_t > trySExtValue() const
Get sign extended value if possible.
Definition:APInt.h:1554
llvm::APInt::operator&=
APInt & operator&=(uint64_t RHS)
Bitwise AND assignment operator.
Definition:APInt.h:688
llvm::APInt::roundToDouble
double roundToDouble(bool isSigned) const
Converts this APInt to a double value.
Definition:APInt.cpp:853
llvm::APInt::isOne
bool isOne() const
Determine if this is a value of 1.
Definition:APInt.h:389
llvm::APInt::getBitsSetFrom
static APInt getBitsSetFrom(unsigned numBits, unsigned loBit)
Constructs an APInt value that has a contiguous range of bits set.
Definition:APInt.h:286
llvm::APInt::getOneBitSet
static APInt getOneBitSet(unsigned numBits, unsigned BitNo)
Return an APInt with exactly one bit set in the result.
Definition:APInt.h:239
llvm::APInt::clearHighBits
void clearHighBits(unsigned hiBits)
Set top hiBits bits to 0.
Definition:APInt.h:1424
llvm::APInt::getSExtValue
int64_t getSExtValue() const
Get sign extended value.
Definition:APInt.h:1542
llvm::APInt::lshrInPlace
void lshrInPlace(unsigned ShiftAmt)
Logical right-shift this APInt by ShiftAmt in place.
Definition:APInt.h:858
llvm::APInt::lshr
APInt lshr(unsigned shiftAmt) const
Logical right-shift function.
Definition:APInt.h:851
llvm::APInt::countr_one
unsigned countr_one() const
Count the number of trailing one bits.
Definition:APInt.h:1635
llvm::APInt::getBitsSetWithWrap
static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit, unsigned hiBit)
Wrap version of getBitsSet.
Definition:APInt.h:270
llvm::APInt::isSignBitClear
bool isSignBitClear() const
Determine if sign bit of this APInt is clear.
Definition:APInt.h:348
llvm::APInt::uge
bool uge(const APInt &RHS) const
Unsigned greater or equal comparison.
Definition:APInt.h:1221
llvm::APInt::setBitVal
void setBitVal(unsigned BitPosition, bool BitValue)
Set a given bit to a given value.
Definition:APInt.h:1343
llvm::APInt::clearSignBit
void clearSignBit()
Set the sign bit to 0.
Definition:APInt.h:1431
llvm::APInt::isMaxValue
bool isMaxValue() const
Determine if this is the largest unsigned value.
Definition:APInt.h:399
llvm::APInt::toStringSigned
void toStringSigned(SmallVectorImpl< char > &Str, unsigned Radix=10) const
Considers the APInt to be signed and converts it into a string in the radix given.
Definition:APInt.h:1675
llvm::APInt::ult
bool ult(uint64_t RHS) const
Unsigned less than comparison.
Definition:APInt.h:1119
llvm::APInt::operator!=
bool operator!=(uint64_t Val) const
Inequality operator.
Definition:APInt.h:1095
llvm::APSInt
An arbitrary precision integer that knows its signedness.
Definition:APSInt.h:23
llvm::ArrayRef
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition:ArrayRef.h:41
llvm::DynamicAPInt
This class provides support for dynamic arbitrary-precision arithmetic.
Definition:DynamicAPInt.h:46
llvm::FoldingSetNodeID
FoldingSetNodeID - This class is used to gather all the unique data bits of a node.
Definition:FoldingSet.h:327
llvm::SmallVectorImpl
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition:SmallVector.h:573
llvm::StringRef
StringRef - Represent a constant reference to a string, i.e.
Definition:StringRef.h:51
llvm::hash_code
An opaque object representing a hash code.
Definition:Hashing.h:75
llvm::raw_ostream
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition:raw_ostream.h:52
uint32_t
uint64_t
uint8_t
float128.h
UINT64_MAX
#define UINT64_MAX
Definition:DataTypes.h:77
llvm::AMDGPU::HSAMD::fromString
std::error_code fromString(StringRef String, Metadata &HSAMetadata)
Converts String to HSAMetadata.
Definition:AMDGPUMetadata.cpp:214
llvm::APIntOps::RoundAPIntToFloat
float RoundAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition:APInt.h:2293
llvm::APIntOps::abdu
const APInt abdu(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be unsigned.
Definition:APInt.h:2242
llvm::APIntOps::abds
const APInt abds(const APInt &A, const APInt &B)
Determine the absolute difference of two APInts considered to be signed.
Definition:APInt.h:2237
llvm::APIntOps::RoundAPIntToDouble
double RoundAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition:APInt.h:2281
llvm::APIntOps::smin
const APInt & smin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be signed.
Definition:APInt.h:2217
llvm::APIntOps::smax
const APInt & smax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be signed.
Definition:APInt.h:2222
llvm::APIntOps::umin
const APInt & umin(const APInt &A, const APInt &B)
Determine the smaller of two APInts considered to be unsigned.
Definition:APInt.h:2227
llvm::APIntOps::RoundFloatToAPInt
APInt RoundFloatToAPInt(float Float, unsigned width)
Converts a float value into a APInt.
Definition:APInt.h:2312
llvm::APIntOps::RoundDoubleToAPInt
APInt RoundDoubleToAPInt(double Double, unsigned width)
Converts the given double value into a APInt.
Definition:APInt.cpp:814
llvm::APIntOps::RoundSignedAPIntToDouble
double RoundSignedAPIntToDouble(const APInt &APIVal)
Converts the given APInt to a double value.
Definition:APInt.h:2288
llvm::APIntOps::RoundSignedAPIntToFloat
float RoundSignedAPIntToFloat(const APInt &APIVal)
Converts the given APInt to a float value.
Definition:APInt.h:2300
llvm::APIntOps::umax
const APInt & umax(const APInt &A, const APInt &B)
Determine the larger of two APInts considered to be unsigned.
Definition:APInt.h:2232
llvm::M68k::MemAddrModeKind::U
@ U
llvm
This is an optimization pass for GlobalISel generic memory operations.
Definition:AddressRanges.h:18
llvm::dump
void dump(const SparseBitVector< ElementSize > &LHS, raw_ostream &out)
Definition:SparseBitVector.h:877
llvm::rotr
constexpr T rotr(T V, int R)
Definition:bit.h:407
llvm::popcount
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition:bit.h:385
llvm::isUIntN
bool isUIntN(unsigned N, uint64_t x)
Checks if an unsigned integer fits into the given (dynamic) bit width.
Definition:MathExtras.h:256
llvm::operator&
APInt operator&(APInt a, const APInt &b)
Definition:APInt.h:2092
llvm::operator*
APInt operator*(APInt a, uint64_t RHS)
Definition:APInt.h:2204
llvm::countr_one
int countr_one(T Value)
Count the number of ones from the least significant bit to the first zero bit.
Definition:bit.h:307
llvm::operator!=
bool operator!=(uint64_t V1, const APInt &V2)
Definition:APInt.h:2082
llvm::operator+=
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator+=(DynamicAPInt &A, int64_t B)
Definition:DynamicAPInt.h:518
llvm::operator-=
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator-=(DynamicAPInt &A, int64_t B)
Definition:DynamicAPInt.h:522
llvm::isPowerOf2_64
constexpr bool isPowerOf2_64(uint64_t Value)
Return true if the argument is a power of two > 0 (64 bit edition.)
Definition:MathExtras.h:297
llvm::operator~
APInt operator~(APInt v)
Unary bitwise complement operator.
Definition:APInt.h:2087
llvm::countr_zero
int countr_zero(T Val)
Count number of 0's from the least significant bit to the most stopping at the first 1.
Definition:bit.h:215
llvm::isShiftedMask_64
constexpr bool isShiftedMask_64(uint64_t Value)
Return true if the argument contains a non-empty sequence of ones with the remainder zero (64 bit ver...
Definition:MathExtras.h:286
llvm::operator*=
LLVM_ATTRIBUTE_ALWAYS_INLINE DynamicAPInt & operator*=(DynamicAPInt &A, int64_t B)
Definition:DynamicAPInt.h:526
llvm::countl_zero
int countl_zero(T Val)
Count number of 0's from the most significant bit to the least stopping at the first 1.
Definition:bit.h:281
llvm::operator^
APInt operator^(APInt a, const APInt &b)
Definition:APInt.h:2132
llvm::isMask_64
constexpr bool isMask_64(uint64_t Value)
Return true if the argument is a non-empty sequence of ones starting at the least significant bit wit...
Definition:MathExtras.h:274
llvm::countl_one
int countl_one(T Value)
Count the number of ones from the most significant bit to the first zero bit.
Definition:bit.h:294
llvm::isIntN
bool isIntN(unsigned N, int64_t x)
Checks if an signed integer fits into the given (dynamic) bit width.
Definition:MathExtras.h:261
llvm::ArrayRef
ArrayRef(const T &OneElt) -> ArrayRef< T >
llvm::operator-
APInt operator-(APInt)
Definition:APInt.h:2157
llvm::SignExtend64
constexpr int64_t SignExtend64(uint64_t x)
Sign-extend the number in the bottom B bits of X to a 64-bit integer.
Definition:MathExtras.h:582
llvm::operator+
APInt operator+(APInt a, const APInt &b)
Definition:APInt.h:2162
llvm::operator|
APInt operator|(APInt a, const APInt &b)
Definition:APInt.h:2112
llvm::reverseBits
T reverseBits(T Val)
Reverse the bits in Val.
Definition:MathExtras.h:123
llvm::rotl
constexpr T rotl(T V, int R)
Definition:bit.h:394
llvm::FunctionReturnThunksKind::Keep
@ Keep
No function return thunk.
shuffles::mask
auto mask(ShuffFunc S, unsigned Length, OptArgs... args) -> MaskT
Definition:HexagonISelDAGToDAGHVX.cpp:899
N
#define N
llvm::Align
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition:Alignment.h:39
llvm::DenseMapInfo< APInt, void >::getEmptyKey
static APInt getEmptyKey()
Definition:APInt.h:2392
llvm::DenseMapInfo< APInt, void >::getTombstoneKey
static APInt getTombstoneKey()
Definition:APInt.h:2398
llvm::DenseMapInfo< APInt, void >::isEqual
static bool isEqual(const APInt &LHS, const APInt &RHS)
Definition:APInt.h:2406
llvm::DenseMapInfo< APInt, void >::getHashValue
static unsigned getHashValue(const APInt &Key)
llvm::DenseMapInfo
An information struct used to provide DenseMap with the various necessary components for a given valu...
Definition:DenseMapInfo.h:52

Generated on Thu Jul 17 2025 03:52:00 for LLVM by doxygen 1.9.6
[8]ページ先頭

©2009-2025 Movatter.jp