- High Level API
- Low Level API
- llama_cpp
- llama_vocab_p
- llama_vocab_p_ctypes
- llama_model_p
- llama_model_p_ctypes
- llama_context_p
- llama_context_p_ctypes
- llama_memory_t
- llama_memory_t_ctypes
- llama_kv_cache_p
- llama_kv_cache_p_ctypes
- llama_pos
- llama_token
- llama_token_p
- llama_seq_id
- llama_token_data
- llama_token_data_p
- llama_token_data_array
- llama_token_data_array_p
- llama_progress_callback
- llama_batch
- llama_model_kv_override_value
- llama_model_kv_override
- llama_model_params
- llama_context_params
- llama_log_callback
- llama_model_quantize_params
- llama_logit_bias
- llama_logit_bias_p
- llama_sampler_chain_params
- llama_chat_message
- llama_adapter_lora_p
- llama_adapter_lora_p_ctypes
- llama_model_default_params
- llama_context_default_params
- llama_sampler_chain_default_params
- llama_model_quantize_default_params
- llama_backend_init
- llama_backend_free
- llama_numa_init
- llama_load_model_from_file
- llama_model_load_from_file
- llama_model_load_from_splits
- llama_model_save_to_file
- llama_free_model
- llama_model_free
- llama_init_from_model
- llama_new_context_with_model
- llama_free
- llama_time_us
- llama_max_devices
- llama_max_parallel_sequences
- llama_supports_mmap
- llama_supports_mlock
- llama_supports_gpu_offload
- llama_supports_rpc
- llama_n_ctx
- llama_n_batch
- llama_n_ubatch
- llama_n_seq_max
- llama_n_ctx_train
- llama_n_embd
- llama_n_layer
- llama_n_head
- llama_n_vocab
- llama_get_model
- llama_get_memory
- llama_pooling_type
- llama_get_kv_self
- llama_model_get_vocab
- llama_model_rope_type
- llama_model_n_ctx_train
- llama_model_n_embd
- llama_model_n_layer
- llama_model_n_head
- llama_model_n_head_kv
- llama_model_n_swa
- llama_model_rope_freq_scale_train
- llama_model_n_cls_out
- llama_model_cls_label
- llama_vocab_type
- llama_vocab_n_tokens
- llama_model_meta_val_str
- llama_model_meta_count
- llama_model_meta_key_by_index
- llama_model_meta_val_str_by_index
- llama_model_desc
- llama_model_size
- llama_model_chat_template
- llama_model_n_params
- llama_model_has_encoder
- llama_model_has_decoder
- llama_model_decoder_start_token
- llama_model_is_recurrent
- llama_model_quantize
- llama_adapter_lora_init
- llama_adapter_lora_free
- llama_set_adapter_lora
- llama_rm_adapter_lora
- llama_clear_adapter_lora
- llama_apply_adapter_cvec
- llama_memory_clear
- llama_memory_seq_rm
- llama_memory_seq_cp
- llama_memory_seq_keep
- llama_memory_seq_add
- llama_memory_seq_div
- llama_memory_seq_pos_min
- llama_memory_seq_pos_max
- llama_memory_can_shift
- llama_kv_self_n_tokens
- llama_kv_self_used_cells
- llama_kv_self_clear
- llama_kv_self_seq_rm
- llama_kv_self_seq_cp
- llama_kv_self_seq_keep
- llama_kv_self_seq_add
- llama_kv_self_seq_div
- llama_kv_self_seq_pos_min
- llama_kv_self_seq_pos_max
- llama_kv_self_defrag
- llama_kv_self_can_shift
- llama_kv_self_update
- llama_state_get_size
- llama_get_state_size
- llama_state_get_data
- llama_copy_state_data
- llama_state_set_data
- llama_set_state_data
- llama_state_load_file
- llama_load_session_file
- llama_state_save_file
- llama_save_session_file
- llama_state_seq_get_size
- llama_state_seq_get_data
- llama_state_seq_set_data
- llama_state_seq_save_file
- llama_state_seq_load_file
- llama_batch_get_one
- llama_batch_init
- llama_batch_free
- llama_encode
- llama_decode
- llama_set_n_threads
- llama_n_threads
- llama_n_threads_batch
- llama_set_embeddings
- llama_set_causal_attn
- llama_set_warmup
- llama_set_abort_callback
- llama_synchronize
- llama_get_logits
- llama_get_logits_ith
- llama_get_embeddings
- llama_get_embeddings_ith
- llama_get_embeddings_seq
- llama_vocab_get_text
- llama_vocab_get_score
- llama_vocab_get_attr
- llama_vocab_is_eog
- llama_vocab_is_control
- llama_vocab_bos
- llama_vocab_eos
- llama_vocab_eot
- llama_vocab_sep
- llama_vocab_nl
- llama_vocab_pad
- llama_vocab_get_add_bos
- llama_vocab_get_add_eos
- llama_vocab_get_add_sep
- llama_vocab_fim_pre
- llama_vocab_fim_suf
- llama_vocab_fim_mid
- llama_vocab_fim_pad
- llama_vocab_fim_rep
- llama_vocab_fim_sep
- llama_token_get_text
- llama_token_get_score
- llama_token_get_attr
- llama_token_is_eog
- llama_token_is_control
- llama_token_bos
- llama_token_eos
- llama_token_eot
- llama_token_cls
- llama_token_sep
- llama_token_nl
- llama_token_pad
- llama_add_bos_token
- llama_add_eos_token
- llama_token_fim_pre
- llama_token_fim_suf
- llama_token_fim_mid
- llama_token_fim_pad
- llama_token_fim_rep
- llama_token_fim_sep
- llama_vocab_cls
- llama_tokenize
- llama_token_to_piece
- llama_detokenize
- llama_chat_apply_template
- llama_chat_builtin_templates
- llama_sampler_context_t
- llama_sampler_i
- llama_sampler
- llama_sampler_p
- llama_sampler_p_ctypes
- llama_sampler_i_name
- llama_sampler_i_accept
- llama_sampler_i_apply
- llama_sampler_i_reset
- llama_sampler_i_clone
- llama_sampler_i_free
- llama_sampler_init
- llama_sampler_name
- llama_sampler_accept
- llama_sampler_apply
- llama_sampler_reset
- llama_sampler_clone
- llama_sampler_free
- llama_sampler_chain_init
- llama_sampler_chain_add
- llama_sampler_chain_get
- llama_sampler_chain_n
- llama_sampler_chain_remove
- llama_sampler_init_greedy
- llama_sampler_init_dist
- llama_sampler_init_softmax
- llama_sampler_init_top_k
- llama_sampler_init_top_p
- llama_sampler_init_min_p
- llama_sampler_init_typical
- llama_sampler_init_temp
- llama_sampler_init_temp_ext
- llama_sampler_init_xtc
- llama_sampler_init_top_n_sigma
- llama_sampler_init_mirostat
- llama_sampler_init_mirostat_v2
- llama_sampler_init_grammar
- llama_sampler_init_grammar_lazy
- llama_sampler_init_grammar_lazy_patterns
- llama_sampler_init_penalties
- llama_sampler_init_dry
- llama_sampler_init_logit_bias
- llama_sampler_init_infill
- llama_sampler_get_seed
- llama_sampler_sample
- llama_split_path
- llama_split_prefix
- llama_print_system_info
- llama_log_set
- llama_perf_context_data
- llama_perf_sampler_data
- llama_perf_context
- llama_perf_context_print
- llama_perf_context_reset
- llama_perf_sampler
- llama_perf_sampler_print
- llama_perf_sampler_reset
- llama_opt_param_filter
- llama_opt_param_filter_all
- llama_opt_params
- llama_opt_init
- llama_opt_epoch
- LLAMA_MAX_DEVICES
- LLAMA_DEFAULT_SEED
- LLAMA_TOKEN_NULL
- LLAMA_FILE_MAGIC_GGLA
- LLAMA_FILE_MAGIC_GGSN
- LLAMA_FILE_MAGIC_GGSQ
- LLAMA_SESSION_MAGIC
- LLAMA_SESSION_VERSION
- LLAMA_STATE_SEQ_MAGIC
- LLAMA_STATE_SEQ_VERSION
- LLAMA_VOCAB_TYPE_NONE
- LLAMA_VOCAB_TYPE_SPM
- LLAMA_VOCAB_TYPE_BPE
- LLAMA_VOCAB_TYPE_WPM
- LLAMA_VOCAB_TYPE_UGM
- LLAMA_VOCAB_TYPE_RWKV
- LLAMA_VOCAB_TYPE_PLAMO2
- LLAMA_VOCAB_PRE_TYPE_DEFAULT
- LLAMA_VOCAB_PRE_TYPE_LLAMA3
- LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM
- LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER
- LLAMA_VOCAB_PRE_TYPE_FALCON
- LLAMA_VOCAB_PRE_TYPE_MPT
- LLAMA_VOCAB_PRE_TYPE_STARCODER
- LLAMA_VOCAB_PRE_TYPE_GPT2
- LLAMA_VOCAB_PRE_TYPE_REFACT
- LLAMA_VOCAB_PRE_TYPE_COMMAND_R
- LLAMA_VOCAB_PRE_TYPE_STABLELM2
- LLAMA_VOCAB_PRE_TYPE_QWEN2
- LLAMA_VOCAB_PRE_TYPE_OLMO
- LLAMA_VOCAB_PRE_TYPE_DBRX
- LLAMA_VOCAB_PRE_TYPE_SMAUG
- LLAMA_VOCAB_PRE_TYPE_PORO
- LLAMA_VOCAB_PRE_TYPE_CHATGLM3
- LLAMA_VOCAB_PRE_TYPE_CHATGLM4
- LLAMA_VOCAB_PRE_TYPE_VIKING
- LLAMA_VOCAB_PRE_TYPE_JAIS
- LLAMA_VOCAB_PRE_TYPE_TEKKEN
- LLAMA_VOCAB_PRE_TYPE_SMOLLM
- LLAMA_VOCAB_PRE_TYPE_CODESHELL
- LLAMA_VOCAB_PRE_TYPE_BLOOM
- LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH
- LLAMA_VOCAB_PRE_TYPE_EXAONE
- LLAMA_VOCAB_PRE_TYPE_CHAMELEON
- LLAMA_VOCAB_PRE_TYPE_MINERVA
- LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM
- LLAMA_VOCAB_PRE_TYPE_GPT4O
- LLAMA_VOCAB_PRE_TYPE_SUPERBPE
- LLAMA_VOCAB_PRE_TYPE_TRILLION
- LLAMA_VOCAB_PRE_TYPE_BAILINGMOE
- LLAMA_VOCAB_PRE_TYPE_LLAMA4
- LLAMA_VOCAB_PRE_TYPE_PIXTRAL
- LLAMA_VOCAB_PRE_TYPE_SEED_CODER
- LLAMA_ROPE_TYPE_NONE
- LLAMA_ROPE_TYPE_NORM
- LLAMA_ROPE_TYPE_NEOX
- LLAMA_ROPE_TYPE_MROPE
- LLAMA_ROPE_TYPE_VISION
- LLAMA_TOKEN_TYPE_UNDEFINED
- LLAMA_TOKEN_TYPE_NORMAL
- LLAMA_TOKEN_TYPE_UNKNOWN
- LLAMA_TOKEN_TYPE_CONTROL
- LLAMA_TOKEN_TYPE_USER_DEFINED
- LLAMA_TOKEN_TYPE_UNUSED
- LLAMA_TOKEN_TYPE_BYTE
- LLAMA_TOKEN_ATTR_UNDEFINED
- LLAMA_TOKEN_ATTR_UNKNOWN
- LLAMA_TOKEN_ATTR_UNUSED
- LLAMA_TOKEN_ATTR_NORMAL
- LLAMA_TOKEN_ATTR_CONTROL
- LLAMA_TOKEN_ATTR_USER_DEFINED
- LLAMA_TOKEN_ATTR_BYTE
- LLAMA_TOKEN_ATTR_NORMALIZED
- LLAMA_TOKEN_ATTR_LSTRIP
- LLAMA_TOKEN_ATTR_RSTRIP
- LLAMA_TOKEN_ATTR_SINGLE_WORD
- LLAMA_FTYPE_ALL_F32
- LLAMA_FTYPE_MOSTLY_F16
- LLAMA_FTYPE_MOSTLY_Q4_0
- LLAMA_FTYPE_MOSTLY_Q4_1
- LLAMA_FTYPE_MOSTLY_Q8_0
- LLAMA_FTYPE_MOSTLY_Q5_0
- LLAMA_FTYPE_MOSTLY_Q5_1
- LLAMA_FTYPE_MOSTLY_Q2_K
- LLAMA_FTYPE_MOSTLY_Q3_K_S
- LLAMA_FTYPE_MOSTLY_Q3_K_M
- LLAMA_FTYPE_MOSTLY_Q3_K_L
- LLAMA_FTYPE_MOSTLY_Q4_K_S
- LLAMA_FTYPE_MOSTLY_Q4_K_M
- LLAMA_FTYPE_MOSTLY_Q5_K_S
- LLAMA_FTYPE_MOSTLY_Q5_K_M
- LLAMA_FTYPE_MOSTLY_Q6_K
- LLAMA_FTYPE_MOSTLY_IQ2_XXS
- LLAMA_FTYPE_MOSTLY_IQ2_XS
- LLAMA_FTYPE_MOSTLY_Q2_K_S
- LLAMA_FTYPE_MOSTLY_IQ3_XS
- LLAMA_FTYPE_MOSTLY_IQ3_XXS
- LLAMA_FTYPE_MOSTLY_IQ1_S
- LLAMA_FTYPE_MOSTLY_IQ4_NL
- LLAMA_FTYPE_MOSTLY_IQ3_S
- LLAMA_FTYPE_MOSTLY_IQ3_M
- LLAMA_FTYPE_MOSTLY_IQ2_S
- LLAMA_FTYPE_MOSTLY_IQ2_M
- LLAMA_FTYPE_MOSTLY_IQ4_XS
- LLAMA_FTYPE_MOSTLY_IQ1_M
- LLAMA_FTYPE_MOSTLY_BF16
- LLAMA_FTYPE_MOSTLY_TQ1_0
- LLAMA_FTYPE_MOSTLY_TQ2_0
- LLAMA_FTYPE_GUESSED
- LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED
- LLAMA_ROPE_SCALING_TYPE_NONE
- LLAMA_ROPE_SCALING_TYPE_LINEAR
- LLAMA_ROPE_SCALING_TYPE_YARN
- LLAMA_ROPE_SCALING_TYPE_LONGROPE
- LLAMA_ROPE_SCALING_TYPE_MAX_VALUE
- LLAMA_POOLING_TYPE_UNSPECIFIED
- LLAMA_POOLING_TYPE_NONE
- LLAMA_POOLING_TYPE_MEAN
- LLAMA_POOLING_TYPE_CLS
- LLAMA_POOLING_TYPE_LAST
- LLAMA_POOLING_TYPE_RANK
- LLAMA_ATTENTION_TYPE_UNSPECIFIED
- LLAMA_ATTENTION_TYPE_CAUSAL
- LLAMA_ATTENTION_TYPE_NON_CAUSAL
- LLAMA_SPLIT_MODE_NONE
- LLAMA_SPLIT_MODE_LAYER
- LLAMA_SPLIT_MODE_ROW
- LLAMA_KV_OVERRIDE_TYPE_INT
- LLAMA_KV_OVERRIDE_TYPE_FLOAT
- LLAMA_KV_OVERRIDE_TYPE_BOOL
- LLAMA_KV_OVERRIDE_TYPE_STR
- llama_cpp
- Misc
- llama_types
- JsonType
- EmbeddingUsage
- Embedding
- CreateEmbeddingResponse
- CompletionLogprobs
- CompletionChoice
- CompletionUsage
- CreateCompletionResponse
- ChatCompletionResponseFunctionCall
- ChatCompletionResponseMessage
- ChatCompletionFunction
- ChatCompletionTopLogprobToken
- ChatCompletionLogprobToken
- ChatCompletionLogprobs
- ChatCompletionResponseChoice
- CreateChatCompletionResponse
- ChatCompletionMessageToolCallChunkFunction
- ChatCompletionMessageToolCallChunk
- ChatCompletionStreamResponseDeltaEmpty
- ChatCompletionStreamResponseDeltaFunctionCall
- ChatCompletionStreamResponseDelta
- ChatCompletionStreamResponseChoice
- CreateChatCompletionStreamResponse
- ChatCompletionFunctions
- ChatCompletionFunctionCallOption
- ChatCompletionRequestResponseFormat
- ChatCompletionRequestMessageContentPartText
- ChatCompletionRequestMessageContentPartImageImageUrl
- ChatCompletionRequestMessageContentPartImage
- ChatCompletionRequestMessageContentPart
- ChatCompletionRequestSystemMessage
- ChatCompletionRequestUserMessage
- ChatCompletionMessageToolCallFunction
- ChatCompletionMessageToolCall
- ChatCompletionMessageToolCalls
- ChatCompletionRequestAssistantMessageFunctionCall
- ChatCompletionRequestAssistantMessage
- ChatCompletionRequestToolMessage
- ChatCompletionRequestFunctionMessage
- ChatCompletionRequestMessage
- ChatCompletionRequestFunctionCallOption
- ChatCompletionRequestFunctionCall
- ChatCompletionFunctionParameters
- ChatCompletionToolFunction
- ChatCompletionTool
- ChatCompletionNamedToolChoiceFunction
- ChatCompletionNamedToolChoice
- ChatCompletionToolChoiceOption
- EmbeddingData
- CompletionChunk
- Completion
- CreateCompletionStreamResponse
- ChatCompletionMessage
- ChatCompletionChoice
- ChatCompletion
- ChatCompletionChunkDeltaEmpty
- ChatCompletionChunkChoice
- ChatCompletionChunkDelta
- ChatCompletionChunk
- ChatCompletionStreamResponse
- ChatCompletionResponseFunction
- ChatCompletionFunctionCall
- llama_types
API Reference
High Level API
High-level Python bindings for llama.cpp.
llama_cpp.Llama
High-level Python wrapper for a llama.cpp model.
Source code inllama_cpp/llama.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364 |
|
__init__(model_path,*,n_gpu_layers=0,split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER,main_gpu=0,tensor_split=None,vocab_only=False,use_mmap=True,use_mlock=False,kv_overrides=None,seed=llama_cpp.LLAMA_DEFAULT_SEED,n_ctx=512,n_batch=512,n_ubatch=512,n_threads=None,n_threads_batch=None,rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,rope_freq_base=0.0,rope_freq_scale=0.0,yarn_ext_factor=-1.0,yarn_attn_factor=1.0,yarn_beta_fast=32.0,yarn_beta_slow=1.0,yarn_orig_ctx=0,logits_all=False,embedding=False,offload_kqv=True,flash_attn=False,op_offloat=None,swa_full=None,no_perf=False,last_n_tokens_size=64,lora_base=None,lora_scale=1.0,lora_path=None,numa=False,chat_format=None,chat_handler=None,draft_model=None,tokenizer=None,type_k=None,type_v=None,spm_infill=False,verbose=True,**kwargs)
Load a llama.cpp model frommodel_path
.
Examples:
Basic usage
>>>importllama_cpp>>>model=llama_cpp.Llama(...model_path="path/to/model",...)>>>print(model("The quick brown fox jumps ",stop=["."])["choices"][0]["text"])the lazy dog
Loading a chat model
>>>importllama_cpp>>>model=llama_cpp.Llama(...model_path="path/to/model",...chat_format="llama-2",...)>>>print(model.create_chat_completion(...messages=[{..."role":"user",..."content":"what is the meaning of life?"...}]...))
Parameters:
model_path
(str
) –Path to the model.
n_gpu_layers
(int
, default:0
) –Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.
split_mode
(int
, default:LLAMA_SPLIT_MODE_LAYER
) –How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options.
main_gpu
(int
, default:0
) –main_gpu interpretation depends on split_mode: LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_MODE_LAYER: ignored
tensor_split
(Optional[List[float]]
, default:None
) –How split tensors should be distributed across GPUs. If None, the model is not split.
vocab_only
(bool
, default:False
) –Only load the vocabulary no weights.
use_mmap
(bool
, default:True
) –Use mmap if possible.
use_mlock
(bool
, default:False
) –Force the system to keep the model in RAM.
kv_overrides
(Optional[Dict[str,Union[bool,int,float,str]]]
, default:None
) –Key-value overrides for the model.
seed
(int
, default:LLAMA_DEFAULT_SEED
) –RNG seed, -1 for random
n_ctx
(int
, default:512
) –Text context, 0 = from model
n_batch
(int
, default:512
) –Prompt processing maximum batch size
n_ubatch
(int
, default:512
) –Physical batch size
n_threads
(Optional[int]
, default:None
) –Number of threads to use for generation
n_threads_batch
(Optional[int]
, default:None
) –Number of threads to use for batch processing
rope_scaling_type
(Optional[int]
, default:LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED
) –RoPE scaling type, from
enum llama_rope_scaling_type
. ref:https://github.com/ggerganov/llama.cpp/pull/2054pooling_type
(int
, default:LLAMA_POOLING_TYPE_UNSPECIFIED
) –Pooling type, from
enum llama_pooling_type
.rope_freq_base
(float
, default:0.0
) –RoPE base frequency, 0 = from model
rope_freq_scale
(float
, default:0.0
) –RoPE frequency scaling factor, 0 = from model
yarn_ext_factor
(float
, default:-1.0
) –YaRN extrapolation mix factor, negative = from model
yarn_attn_factor
(float
, default:1.0
) –YaRN magnitude scaling factor
yarn_beta_fast
(float
, default:32.0
) –YaRN low correction dim
yarn_beta_slow
(float
, default:1.0
) –YaRN high correction dim
yarn_orig_ctx
(int
, default:0
) –YaRN original context size
logits_all
(bool
, default:False
) –Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.
embedding
(bool
, default:False
) –Embedding mode only.
offload_kqv
(bool
, default:True
) –Offload K, Q, V to GPU.
flash_attn
(bool
, default:False
) –Use flash attention.
op_offloat
(Optional[bool]
, default:None
) –offload host tensor operations to device
swa_full
(Optional[bool]
, default:None
) –use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)
no_perf
(bool
, default:False
) –Measure performance timings.
last_n_tokens_size
(int
, default:64
) –Maximum number of tokens to keep in the last_n_tokens deque.
lora_base
(Optional[str]
, default:None
) –Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.
lora_path
(Optional[str]
, default:None
) –Path to a LoRA file to apply to the model.
numa
(Union[bool,int]
, default:False
) –numa policy
chat_format
(Optional[str]
, default:None
) –String specifying the chat format to use when calling create_chat_completion.
chat_handler
(Optional[LlamaChatCompletionHandler]
, default:None
) –Optional chat handler to use when calling create_chat_completion.
draft_model
(Optional[LlamaDraftModel]
, default:None
) –Optional draft model to use for speculative decoding.
tokenizer
(Optional[BaseLlamaTokenizer]
, default:None
) –Optional tokenizer to override the default tokenizer from llama.cpp.
verbose
(bool
, default:True
) –Print verbose output to stderr.
type_k
(Optional[int]
, default:None
) –KV cache data type for K (default: f16)
type_v
(Optional[int]
, default:None
) –KV cache data type for V (default: f16)
spm_infill
(bool
, default:False
) –Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.
Raises:
ValueError
–If the model path does not exist.
Returns:
- –
A Llama instance.
Source code inllama_cpp/llama.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547 |
|
tokenize(text,add_bos=True,special=False)
Tokenize a string.
Parameters:
text
(bytes
) –The utf-8 encoded string to tokenize.
add_bos
(bool
, default:True
) –Whether to add a beginning of sequence token.
special
(bool
, default:False
) –Whether to tokenize special tokens.
Raises:
RuntimeError
–If the tokenization failed.
Returns:
Source code inllama_cpp/llama.py
detokenize(tokens,prev_tokens=None,special=False)
Detokenize a list of tokens.
Parameters:
tokens
(List[int]
) –The list of tokens to detokenize.
prev_tokens
(Optional[List[int]]
, default:None
) –The list of previous tokens. Offset mapping will be performed if provided.
special
(bool
, default:False
) –Whether to detokenize special tokens.
Returns:
bytes
–The detokenized string.
Source code inllama_cpp/llama.py
reset()
eval(tokens)
Evaluate a list of tokens.
Parameters:
Source code inllama_cpp/llama.py
sample(top_k=40,top_p=0.95,min_p=0.05,typical_p=1.0,temp=0.8,repeat_penalty=1.0,frequency_penalty=0.0,presence_penalty=0.0,tfs_z=1.0,mirostat_mode=0,mirostat_eta=0.1,mirostat_tau=5.0,penalize_nl=True,logits_processor=None,grammar=None,idx=None)
Sample a token from the model.
Parameters:
top_k
(int
, default:40
) –The top-k sampling parameter.
top_p
(float
, default:0.95
) –The top-p sampling parameter.
temp
(float
, default:0.8
) –The temperature parameter.
repeat_penalty
(float
, default:1.0
) –The repeat penalty parameter.
Returns:
- –
The sampled token.
Source code inllama_cpp/llama.py
generate(tokens,top_k=40,top_p=0.95,min_p=0.05,typical_p=1.0,temp=0.8,repeat_penalty=1.0,reset=True,frequency_penalty=0.0,presence_penalty=0.0,tfs_z=1.0,mirostat_mode=0,mirostat_tau=5.0,mirostat_eta=0.1,penalize_nl=True,logits_processor=None,stopping_criteria=None,grammar=None)
Create a generator of tokens from a prompt.
Examples:
>>>llama=Llama("models/ggml-7b.bin")>>>tokens=llama.tokenize(b"Hello, world!")>>>fortokeninllama.generate(tokens,top_k=40,top_p=0.95,temp=1.0,repeat_penalty=1.0):...print(llama.detokenize([token]))
Parameters:
tokens
(Sequence[int]
) –The prompt tokens.
top_k
(int
, default:40
) –The top-k sampling parameter.
top_p
(float
, default:0.95
) –The top-p sampling parameter.
temp
(float
, default:0.8
) –The temperature parameter.
repeat_penalty
(float
, default:1.0
) –The repeat penalty parameter.
reset
(bool
, default:True
) –Whether to reset the model state.
Yields:
int
–The generated tokens.
Source code inllama_cpp/llama.py
822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960 |
|
create_embedding(input,model=None)
Embed a string.
Parameters:
Returns:
CreateEmbeddingResponse
–An embedding object.
Source code inllama_cpp/llama.py
embed(input,normalize=False,truncate=True,return_count=False)
Embed a string.
Parameters:
Returns:
- –
A list of embeddings
Source code inllama_cpp/llama.py
100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121 |
|
create_completion(prompt,suffix=None,max_tokens=16,temperature=0.8,top_p=0.95,min_p=0.05,typical_p=1.0,logprobs=None,echo=False,stop=[],frequency_penalty=0.0,presence_penalty=0.0,repeat_penalty=1.0,top_k=40,stream=False,seed=None,tfs_z=1.0,mirostat_mode=0,mirostat_tau=5.0,mirostat_eta=0.1,model=None,stopping_criteria=None,logits_processor=None,grammar=None,logit_bias=None)
Generate text from a prompt.
Parameters:
prompt
(Union[str,List[int]]
) –The prompt to generate text from.
suffix
(Optional[str]
, default:None
) –A suffix to append to the generated text. If None, no suffix is appended.
max_tokens
(Optional[int]
, default:16
) –The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
temperature
(float
, default:0.8
) –The temperature to use for sampling.
top_p
(float
, default:0.95
) –The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751
min_p
(float
, default:0.05
) –The min-p value to use for minimum p sampling. Minimum P sampling as described inhttps://github.com/ggerganov/llama.cpp/pull/3841
typical_p
(float
, default:1.0
) –The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paperhttps://arxiv.org/abs/2202.00666.
logprobs
(Optional[int]
, default:None
) –The number of logprobs to return. If None, no logprobs are returned.
echo
(bool
, default:False
) –Whether to echo the prompt.
stop
(Optional[Union[str,List[str]]]
, default:[]
) –A list of strings to stop generation when encountered.
frequency_penalty
(float
, default:0.0
) –The penalty to apply to tokens based on their frequency in the prompt.
presence_penalty
(float
, default:0.0
) –The penalty to apply to tokens based on their presence in the prompt.
repeat_penalty
(float
, default:1.0
) –The penalty to apply to repeated tokens.
top_k
(int
, default:40
) –The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751
stream
(bool
, default:False
) –Whether to stream the results.
seed
(Optional[int]
, default:None
) –The seed to use for sampling.
tfs_z
(float
, default:1.0
) –The tail-free sampling parameter. Tail Free Sampling described inhttps://www.trentonbricken.com/Tail-Free-Sampling/.
mirostat_mode
(int
, default:0
) –The mirostat sampling mode.
mirostat_tau
(float
, default:5.0
) –The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
mirostat_eta
(float
, default:0.1
) –The learning rate used to update
mu
based on the error between the target and observed surprisal of the sampled word. A larger learning rate will causemu
to be updated more quickly, while a smaller learning rate will result in slower updates.model
(Optional[str]
, default:None
) –The name to use for the model in the completion object.
stopping_criteria
(Optional[StoppingCriteriaList]
, default:None
) –A list of stopping criteria to use.
logits_processor
(Optional[LogitsProcessorList]
, default:None
) –A list of logits processors to use.
grammar
(Optional[LlamaGrammar]
, default:None
) –A grammar to use for constrained sampling.
logit_bias
(Optional[Dict[int,float]]
, default:None
) –A logit bias to use.
Raises:
ValueError
–If the requested tokens exceed the context window.
RuntimeError
–If the prompt fails to tokenize or the model fails to evaluate the prompt.
Returns:
Union[CreateCompletionResponse,Iterator[CreateCompletionStreamResponse]]
–Response object containing the generated text.
Source code inllama_cpp/llama.py
174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838 |
|
__call__(prompt,suffix=None,max_tokens=16,temperature=0.8,top_p=0.95,min_p=0.05,typical_p=1.0,logprobs=None,echo=False,stop=[],frequency_penalty=0.0,presence_penalty=0.0,repeat_penalty=1.0,top_k=40,stream=False,seed=None,tfs_z=1.0,mirostat_mode=0,mirostat_tau=5.0,mirostat_eta=0.1,model=None,stopping_criteria=None,logits_processor=None,grammar=None,logit_bias=None)
Generate text from a prompt.
Parameters:
prompt
(str
) –The prompt to generate text from.
suffix
(Optional[str]
, default:None
) –A suffix to append to the generated text. If None, no suffix is appended.
max_tokens
(Optional[int]
, default:16
) –The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
temperature
(float
, default:0.8
) –The temperature to use for sampling.
top_p
(float
, default:0.95
) –The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751
min_p
(float
, default:0.05
) –The min-p value to use for minimum p sampling. Minimum P sampling as described inhttps://github.com/ggerganov/llama.cpp/pull/3841
typical_p
(float
, default:1.0
) –The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paperhttps://arxiv.org/abs/2202.00666.
logprobs
(Optional[int]
, default:None
) –The number of logprobs to return. If None, no logprobs are returned.
echo
(bool
, default:False
) –Whether to echo the prompt.
stop
(Optional[Union[str,List[str]]]
, default:[]
) –A list of strings to stop generation when encountered.
frequency_penalty
(float
, default:0.0
) –The penalty to apply to tokens based on their frequency in the prompt.
presence_penalty
(float
, default:0.0
) –The penalty to apply to tokens based on their presence in the prompt.
repeat_penalty
(float
, default:1.0
) –The penalty to apply to repeated tokens.
top_k
(int
, default:40
) –The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751
stream
(bool
, default:False
) –Whether to stream the results.
seed
(Optional[int]
, default:None
) –The seed to use for sampling.
tfs_z
(float
, default:1.0
) –The tail-free sampling parameter. Tail Free Sampling described inhttps://www.trentonbricken.com/Tail-Free-Sampling/.
mirostat_mode
(int
, default:0
) –The mirostat sampling mode.
mirostat_tau
(float
, default:5.0
) –The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
mirostat_eta
(float
, default:0.1
) –The learning rate used to update
mu
based on the error between the target and observed surprisal of the sampled word. A larger learning rate will causemu
to be updated more quickly, while a smaller learning rate will result in slower updates.model
(Optional[str]
, default:None
) –The name to use for the model in the completion object.
stopping_criteria
(Optional[StoppingCriteriaList]
, default:None
) –A list of stopping criteria to use.
logits_processor
(Optional[LogitsProcessorList]
, default:None
) –A list of logits processors to use.
grammar
(Optional[LlamaGrammar]
, default:None
) –A grammar to use for constrained sampling.
logit_bias
(Optional[Dict[int,float]]
, default:None
) –A logit bias to use.
Raises:
ValueError
–If the requested tokens exceed the context window.
RuntimeError
–If the prompt fails to tokenize or the model fails to evaluate the prompt.
Returns:
Union[CreateCompletionResponse,Iterator[CreateCompletionStreamResponse]]
–Response object containing the generated text.
Source code inllama_cpp/llama.py
1840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930 |
|
create_chat_completion(messages,functions=None,function_call=None,tools=None,tool_choice=None,temperature=0.2,top_p=0.95,top_k=40,min_p=0.05,typical_p=1.0,stream=False,stop=[],seed=None,response_format=None,max_tokens=None,presence_penalty=0.0,frequency_penalty=0.0,repeat_penalty=1.0,tfs_z=1.0,mirostat_mode=0,mirostat_tau=5.0,mirostat_eta=0.1,model=None,logits_processor=None,grammar=None,logit_bias=None,logprobs=None,top_logprobs=None)
Generate a chat completion from a list of messages.
Parameters:
messages
(List[ChatCompletionRequestMessage]
) –A list of messages to generate a response for.
functions
(Optional[List[ChatCompletionFunction]]
, default:None
) –A list of functions to use for the chat completion.
function_call
(Optional[ChatCompletionRequestFunctionCall]
, default:None
) –A function call to use for the chat completion.
tools
(Optional[List[ChatCompletionTool]]
, default:None
) –A list of tools to use for the chat completion.
tool_choice
(Optional[ChatCompletionToolChoiceOption]
, default:None
) –A tool choice to use for the chat completion.
temperature
(float
, default:0.2
) –The temperature to use for sampling.
top_p
(float
, default:0.95
) –The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751
top_k
(int
, default:40
) –The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751
min_p
(float
, default:0.05
) –The min-p value to use for minimum p sampling. Minimum P sampling as described inhttps://github.com/ggerganov/llama.cpp/pull/3841
typical_p
(float
, default:1.0
) –The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paperhttps://arxiv.org/abs/2202.00666.
stream
(bool
, default:False
) –Whether to stream the results.
stop
(Optional[Union[str,List[str]]]
, default:[]
) –A list of strings to stop generation when encountered.
seed
(Optional[int]
, default:None
) –The seed to use for sampling.
response_format
(Optional[ChatCompletionRequestResponseFormat]
, default:None
) –The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json.
max_tokens
(Optional[int]
, default:None
) –The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.
presence_penalty
(float
, default:0.0
) –The penalty to apply to tokens based on their presence in the prompt.
frequency_penalty
(float
, default:0.0
) –The penalty to apply to tokens based on their frequency in the prompt.
repeat_penalty
(float
, default:1.0
) –The penalty to apply to repeated tokens.
tfs_z
(float
, default:1.0
) –The tail-free sampling parameter.
mirostat_mode
(int
, default:0
) –The mirostat sampling mode.
mirostat_tau
(float
, default:5.0
) –The mirostat sampling tau parameter.
mirostat_eta
(float
, default:0.1
) –The mirostat sampling eta parameter.
model
(Optional[str]
, default:None
) –The name to use for the model in the completion object.
logits_processor
(Optional[LogitsProcessorList]
, default:None
) –A list of logits processors to use.
grammar
(Optional[LlamaGrammar]
, default:None
) –A grammar to use.
logit_bias
(Optional[Dict[int,float]]
, default:None
) –A logit bias to use.
Returns:
Union[CreateChatCompletionResponse,Iterator[CreateChatCompletionStreamResponse]]
–Generated chat completion or a stream of chat completion chunks.
Source code inllama_cpp/llama.py
193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033 |
|
create_chat_completion_openai_v1(*args,**kwargs)
Generate a chat completion with return type based on the the OpenAI v1 API.
OpenAI python package is required to use this method.
You can install it withpip install openai
.
Parameters:
*args
(Any
, default:()
) –Positional arguments to pass to create_chat_completion.
**kwargs
(Any
, default:{}
) –Keyword arguments to pass to create_chat_completion.
Returns:
- –
Generated chat completion or a stream of chat completion chunks.
Source code inllama_cpp/llama.py
set_cache(cache)
save_state()
Source code inllama_cpp/llama.py
load_state(state)
Source code inllama_cpp/llama.py
token_bos()
token_eos()
from_pretrained(repo_id,filename,additional_files=None,local_dir=None,local_dir_use_symlinks='auto',cache_dir=None,**kwargs)
classmethod
Create a Llama model from a pretrained model name or path.This method requires the huggingface-hub package.You can install it withpip install huggingface-hub
.
Parameters:
repo_id
(str
) –The model repo id.
filename
(Optional[str]
) –A filename or glob pattern to match the model file in the repo.
additional_files
(Optional[List]
, default:None
) –A list of filenames or glob patterns to match additional model files in the repo.
local_dir
(Optional[Union[str,PathLike[str]]]
, default:None
) –The local directory to save the model to.
local_dir_use_symlinks
(Union[bool,Literal['auto']]
, default:'auto'
) –Whether to use symlinks when downloading the model.
**kwargs
(Any
, default:{}
) –Additional keyword arguments to pass to the Llama constructor.
Returns:
'Llama'
–A Llama model.
Source code inllama_cpp/llama.py
223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364 |
|
llama_cpp.LlamaGrammar
Source code inllama_cpp/llama_grammar.py
from_string(grammar,verbose=True)
classmethod
llama_cpp.LlamaCache=LlamaRAMCache
module-attribute
llama_cpp.LlamaState
Source code inllama_cpp/llama.py
llama_cpp.LogitsProcessor=Callable[[npt.NDArray[np.intc],npt.NDArray[np.single]],npt.NDArray[np.single]]
module-attribute
llama_cpp.LogitsProcessorList
Bases:List[LogitsProcessor]
llama_cpp.StoppingCriteria=Callable[[npt.NDArray[np.intc],npt.NDArray[np.single]],bool]
module-attribute
llama_cpp.StoppingCriteriaList
Low Level API
Low-level Python bindings for llama.cpp using Python's ctypes library.
llama_cpp.llama_cpp
llama_vocab_p=NewType('llama_vocab_p',int)
module-attribute
llama_vocab_p_ctypes=ctypes.c_void_p
module-attribute
llama_model_p=NewType('llama_model_p',int)
module-attribute
llama_model_p_ctypes=ctypes.c_void_p
module-attribute
llama_context_p=NewType('llama_context_p',int)
module-attribute
llama_context_p_ctypes=ctypes.c_void_p
module-attribute
llama_memory_t=NewType('llama_memory_t',int)
module-attribute
llama_memory_t_ctypes=ctypes.c_void_p
module-attribute
llama_kv_cache_p=NewType('llama_kv_cache_p',int)
module-attribute
llama_kv_cache_p_ctypes=ctypes.c_void_p
module-attribute
llama_pos=ctypes.c_int32
module-attribute
llama_token=ctypes.c_int32
module-attribute
llama_token_p=ctypes.POINTER(llama_token)
module-attribute
llama_seq_id=ctypes.c_int32
module-attribute
llama_token_data
Bases:Structure
Used to store token data
Attributes:
id
(llama_token
) –token id
logit
(float
) –log-odds of the token
p
(float
) –probability of the token
Source code inllama_cpp/llama_cpp.py
llama_token_data_p=ctypes.POINTER(llama_token_data)
module-attribute
llama_token_data_array
Bases:Structure
Used to sample tokens given logits
Attributes:
data
(Array[llama_token_data]
) –token data
size
(int
) –size of the array
selected
(int
) –index in the data array (i.e. not the token id)
sorted
(bool
) –whether the array is sorted
Source code inllama_cpp/llama_cpp.py
llama_token_data_array_p=ctypes.POINTER(llama_token_data_array)
module-attribute
llama_progress_callback=ctypes.CFUNCTYPE(ctypes.c_bool,ctypes.c_float,ctypes.c_void_p)
module-attribute
llama_batch
Bases:Structure
Input data for llama_encode/llama_decode
A llama_batch object can contain input about one or many sequences
The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
Attributes:
n_tokens
(int
) –number of tokens
token
(Array[llama_token]
) –the token ids of the input (used when embd is NULL)
embd
(Array[c_float]
) –token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
pos
(Array[Array[llama_pos]]
) –the positions of the respective token in the sequence
seq_id
(Array[Array[llama_seq_id]]
) –the sequence to which the respective token belongs
logits
(Array[c_int8]
) –if zero, the logits for the respective token will not be output
Source code inllama_cpp/llama_cpp.py
llama_model_kv_override_value
Bases:Union
Source code inllama_cpp/llama_cpp.py
llama_model_kv_override
llama_model_params
Bases:Structure
Parameters for llama_model
Attributes:
devices
(Array[ggml_backend_dev_t]
) –NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)
tensor_buft_overrides
(Array[llama_model_tensor_buft_override]
) –NULL-terminated list of buffer types to use for tensors that match a pattern
n_gpu_layers
(int
) –number of layers to store in VRAM
split_mode
(int
) –how to split the model across multiple GPUs
main_gpu
(int
) –the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE
tensor_split
(Array[c_float]
) –proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
progress_callback
(llama_progress_callback
) –called with a progress value between 0.0 and 1.0. Pass NULL to disable. If the provided progress_callback returns true, model loading continues. If it returns false, model loading is immediately aborted.
progress_callback_user_data
(c_void_p
) –context pointer passed to the progress callback
kv_overrides
(Array[llama_model_kv_override]
) –override key-value pairs of the model meta data
vocab_only
(bool
) –only load the vocabulary, no weights
use_mmap
(bool
) –use mmap if possible
use_mlock
(bool
) –force system to keep model in RAM
check_tensors
(bool
) –validate model tensor data
Source code inllama_cpp/llama_cpp.py
llama_context_params
Bases:Structure
Parameters for llama_context
Attributes:
n_ctx
(int
) –text context, 0 = from model
n_batch
(int
) –logical maximum batch size that can be submitted to llama_decode
n_ubatch
(int
) –physical maximum batch size
n_seq_max
(int
) –max number of sequences (i.e. distinct states for recurrent models)
n_threads
(int
) –number of threads to use for generation
n_threads_batch
(int
) –number of threads to use for batch processing
rope_scaling_type
(int
) –RoPE scaling type, from
enum llama_rope_scaling_type
pooling_type
(int
) –whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)
attention_type
(int
) –attention type to use for embeddings
rope_freq_base
(float
) –RoPE base frequency, 0 = from model
rope_freq_scale
(float
) –RoPE frequency scaling factor, 0 = from model
yarn_ext_factor
(float
) –YaRN extrapolation mix factor, negative = from model
yarn_attn_factor
(float
) –YaRN magnitude scaling factor
yarn_beta_fast
(float
) –YaRN low correction dim
yarn_beta_slow
(float
) –YaRN high correction dim
yarn_orig_ctx
(int
) –YaRN original context size
defrag_thold
(float
) –defragment the KV cache if holes/size > thold, <= 0 disabled (default)
cb_eval
(ggml_backend_sched_eval_callback
) –callback for scheduling eval
cb_eval_user_data
(c_void_p
) –user data for cb_eval
type_k
(int
) –data type for K cache
type_v
(int
) –data type for V cache
abort_callback
(ggml_abort_callback
) –abort callback if it returns true, execution of llama_decode() will be aborted
abort_callback_data
(c_void_p
) –data for abort_callback
embeddings
(bool
) –if true, extract embeddings (together with logits)
offload_kqv
(bool
) –whether to offload the KQV ops (including the KV cache) to GPU
flash_attn
(bool
) –whether to use flash attention
no_perf
(bool
) –whether to measure performance timings
op_offload
(bool
) –offload host tensor operations to device
swa_full
(bool
) –use full-size SWA cache
Source code inllama_cpp/llama_cpp.py
llama_log_callback=ctypes.CFUNCTYPE(None,ctypes.c_int,ctypes.c_char_p,ctypes.c_void_p)
module-attribute
Signature for logging eventsNote that text includes the new line character at the end for most events.If your logging mechanism cannot handle that, check if the last character is '' and strip itif it exists.It might not exist for progress report where '.' is output repeatedly.
llama_model_quantize_params
Bases:Structure
Parameters for llama_model_quantize
Attributes:
nthread
(int
) –number of threads to use for quantizing, if <=0 will use std:
:hardware_concurrency()
ftype
(int
) –quantize to this llama_ftype
output_tensor_type
(int
) –output tensor type
token_embedding_type
(int
) –token embeddings tensor type
allow_requantize
(bool
) –allow quantizing non-f32/f16 tensors
quantize_output_tensor
(bool
) –quantize output.weight
only_copy
(bool
) –only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
pure
(bool
) –quantize all tensors to the default type
keep_split
(bool
) –quantize to the same number of shards
imatrix
(c_void_p
) –pointer to importance matrix data
kv_overrides
(c_void_p
) –pointer to vector containing overrides
tensor_types
(c_void_p
) –pointer to vector containing tensor types
prune_layers
(c_void_p
) –pointer to vector containing layer indices to prune
Source code inllama_cpp/llama_cpp.py
llama_logit_bias
Bases:Structure
Used to store logit bias
Attributes:
token
(llama_token
) –token id
bias
(float
) –bias
Source code inllama_cpp/llama_cpp.py
llama_logit_bias_p=ctypes.POINTER(llama_logit_bias)
module-attribute
llama_sampler_chain_params
llama_chat_message
llama_adapter_lora_p=ctypes.c_void_p
module-attribute
llama_adapter_lora_p_ctypes=ctypes.POINTER(ctypes.c_void_p)
module-attribute
llama_model_default_params()
llama_context_default_params()
llama_sampler_chain_default_params()
Get default parameters for llama_sampler_chain
llama_model_quantize_default_params()
Get default parameters for llama_model_quantize
llama_backend_init()
llama_backend_free()
llama_numa_init(numa)
llama_load_model_from_file(path_model,params)
llama_model_load_from_file(path_model,params)
Load the model from a file
If the file is split into multiple parts, the file name must follow this pattern:
If the split file name does not follow this pattern, use llama_model_load_from_splits
Source code inllama_cpp/llama_cpp.py
llama_model_load_from_splits(paths,n_paths,params)
Load the model from multiple splits (support custom naming scheme)
The paths must be in the correct order
Source code inllama_cpp/llama_cpp.py
llama_model_save_to_file(model,path_model)
llama_free_model(model)
llama_model_free(model)
llama_init_from_model(model,params)
llama_new_context_with_model(model,params)
Source code inllama_cpp/llama_cpp.py
llama_free(ctx)
llama_time_us()
llama_max_devices()
llama_max_parallel_sequences()
llama_supports_mmap()
llama_supports_mlock()
llama_supports_gpu_offload()
llama_supports_rpc()
llama_n_ctx(ctx)
llama_n_batch(ctx)
llama_n_ubatch(ctx)
llama_n_seq_max(ctx)
llama_n_ctx_train(model)
llama_n_embd(model)
llama_n_layer(model)
llama_n_head(model)
llama_n_vocab(model)
llama_get_model(ctx)
llama_get_memory(ctx)
llama_pooling_type(ctx)
llama_get_kv_self(ctx)
Get the KV cache for self-attention (DEPRECATED)
llama_model_get_vocab(model)
llama_model_rope_type(model)
llama_model_n_ctx_train(model)
llama_model_n_embd(model)
llama_model_n_layer(model)
llama_model_n_head(model)
llama_model_n_head_kv(model)
llama_model_n_swa(model)
llama_model_rope_freq_scale_train(model)
llama_model_n_cls_out(model)
Returns the number of classifier outputs (only valid for classifier models)
llama_model_cls_label(model,i)
Returns label of classifier output by index. Returns None if no label provided
Source code inllama_cpp/llama_cpp.py
llama_vocab_type(vocab)
llama_vocab_n_tokens(vocab)
llama_model_meta_val_str(model,key,buf,buf_size)
Get metadata value as a string by key name
Source code inllama_cpp/llama_cpp.py
llama_model_meta_count(model)
llama_model_meta_key_by_index(model,i,buf,buf_size)
Get metadata key name by index
Source code inllama_cpp/llama_cpp.py
llama_model_meta_val_str_by_index(model,i,buf,buf_size)
Get metadata value as a string by index
Source code inllama_cpp/llama_cpp.py
llama_model_desc(model,buf,buf_size)
Get a string describing the model type
Source code inllama_cpp/llama_cpp.py
llama_model_size(model)
Returns the total size of all the tensors in the model in bytes
llama_model_chat_template(model,name)
Get the default chat template. Returns None if not availableIf name is None, returns the default chat template
Source code inllama_cpp/llama_cpp.py
llama_model_n_params(model)
llama_model_has_encoder(model)
Returns true if the model contains an encoder that requires llama_encode() call
llama_model_has_decoder(model)
Returns true if the model contains a decoder that requires llama_decode() call
llama_model_decoder_start_token(model)
For encoder-decoder models, this function returns id of the token that must be providedto the decoder to start generating output sequence. For other models, it returns -1.
Source code inllama_cpp/llama_cpp.py
llama_model_is_recurrent(model)
Returns true if the model is recurrent (like Mamba, RWKV, etc.)
llama_model_quantize(fname_inp,fname_out,params)
Returns 0 on success
Source code inllama_cpp/llama_cpp.py
llama_adapter_lora_init(model,path_lora)
llama_adapter_lora_free(adapter)
llama_set_adapter_lora(ctx,adapter,scale)
Add a loaded LoRA adapter to given contextThis will not modify model's weight
Source code inllama_cpp/llama_cpp.py
llama_rm_adapter_lora(ctx,adapter)
Remove a specific LoRA adapter from given contextReturn -1 if the adapter is not present in the context
Source code inllama_cpp/llama_cpp.py
llama_clear_adapter_lora(ctx)
llama_apply_adapter_cvec(ctx,data,len,n_embd,il_start,il_end)
Apply a loaded control vector to a llama_context, or if data is NULL, clearthe currently loaded vector.n_embd should be the size of a single layer's control, and data should pointto an n_embd x n_layers buffer starting from layer 1.il_start and il_end are the layer range the vector should apply to (both inclusive)See llama_control_vector_load in common to load a control vector.
Source code inllama_cpp/llama_cpp.py
llama_memory_clear(mem,data)
Clear the memory contentsIf data == true, the data buffers will also be cleared together with the metadata
Source code inllama_cpp/llama_cpp.py
llama_memory_seq_rm(mem,seq_id,p0,p1)
Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails
seq_id < 0 : match any sequencep0 < 0 : [0, p1]p1 < 0 : [p0, inf)
Source code inllama_cpp/llama_cpp.py
llama_memory_seq_cp(mem,seq_id_src,seq_id_dst,p0,p1)
Copy all tokens that belong to the specified sequence to another sequencep0 < 0 : [0, p1]p1 < 0 : [p0, inf)
Source code inllama_cpp/llama_cpp.py
llama_memory_seq_keep(mem,seq_id)
Removes all tokens that do not belong to the specified sequence
llama_memory_seq_add(mem,seq_id,p0,p1,delta)
Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)p0 < 0 : [0, p1]p1 < 0 : [p0, inf)
Source code inllama_cpp/llama_cpp.py
llama_memory_seq_div(mem,seq_id,p0,p1,d)
Integer division of the positions by factor ofd > 1
p0 < 0 : [0, p1]p1 < 0 : [p0, inf)
Source code inllama_cpp/llama_cpp.py
llama_memory_seq_pos_min(mem,seq_id)
Returns the smallest position present in the memory for the specified sequenceThis is typically non-zero only for SWA cachesReturn -1 if the sequence is empty
Source code inllama_cpp/llama_cpp.py
llama_memory_seq_pos_max(mem,seq_id)
Returns the largest position present in the memory for the specified sequenceReturn -1 if the sequence is empty
Source code inllama_cpp/llama_cpp.py
llama_memory_can_shift(mem)
llama_kv_self_n_tokens(ctx)
Returns the number of tokens in the KV cache (slow, use only for debug) (DEPRECATED)
llama_kv_self_used_cells(ctx)
Returns the number of used KV cells (DEPRECATED)
llama_kv_self_clear(ctx)
llama_kv_self_seq_rm(ctx,seq_id,p0,p1)
Remove tokens from KV cache (DEPRECATED)
Source code inllama_cpp/llama_cpp.py
llama_kv_self_seq_cp(ctx,seq_id_src,seq_id_dst,p0,p1)
Copy tokens in KV cache (DEPRECATED)
Source code inllama_cpp/llama_cpp.py
llama_kv_self_seq_keep(ctx,seq_id)
Keep only specified sequence in KV cache (DEPRECATED)
llama_kv_self_seq_add(ctx,seq_id,p0,p1,delta)
Add delta to sequence positions in KV cache (DEPRECATED)
Source code inllama_cpp/llama_cpp.py
llama_kv_self_seq_div(ctx,seq_id,p0,p1,d)
Divide sequence positions in KV cache (DEPRECATED)
Source code inllama_cpp/llama_cpp.py
llama_kv_self_seq_pos_min(ctx,seq_id)
Returns the smallest position in KV cache for sequence (DEPRECATED)
Source code inllama_cpp/llama_cpp.py
llama_kv_self_seq_pos_max(ctx,seq_id)
Returns the largest position in KV cache for sequence (DEPRECATED)
Source code inllama_cpp/llama_cpp.py
llama_kv_self_defrag(ctx)
llama_kv_self_can_shift(ctx)
Check if the context supports KV cache shifting (DEPRECATED)
llama_kv_self_update(ctx)
llama_state_get_size(ctx)
Returns theactual size in bytes of the state (logits, embedding and memory)
llama_get_state_size(ctx)
llama_state_get_data(ctx,dst,size)
Copies the state to the specified destination address.Destination needs to have allocated enough memory.Returns the number of bytes copied
Source code inllama_cpp/llama_cpp.py
llama_copy_state_data(ctx,dst)
Copies the state to the specified destination address (DEPRECATED)
Source code inllama_cpp/llama_cpp.py
llama_state_set_data(ctx,src,size)
Set the state reading from the specified addressReturns the number of bytes read
Source code inllama_cpp/llama_cpp.py
llama_set_state_data(ctx,src)
Set the state reading from the specified address (DEPRECATED)
Source code inllama_cpp/llama_cpp.py
llama_state_load_file(ctx,path_session,tokens_out,n_token_capacity,n_token_count_out)
Source code inllama_cpp/llama_cpp.py
llama_load_session_file(ctx,path_session,tokens_out,n_token_capacity,n_token_count_out)
Source code inllama_cpp/llama_cpp.py
llama_state_save_file(ctx,path_session,tokens,n_token_count)
Source code inllama_cpp/llama_cpp.py
llama_save_session_file(ctx,path_session,tokens,n_token_count)
Source code inllama_cpp/llama_cpp.py
llama_state_seq_get_size(ctx,seq_id)
Get the exact size needed to copy the state of a single sequence
Source code inllama_cpp/llama_cpp.py
llama_state_seq_get_data(ctx,dst,size,seq_id)
Copy the state of a single sequence into the specified buffer
Source code inllama_cpp/llama_cpp.py
llama_state_seq_set_data(ctx,src,size,dest_seq_id)
Copy the sequence data into the specified sequence
Source code inllama_cpp/llama_cpp.py
llama_state_seq_save_file(ctx,filepath,seq_id,tokens,n_token_count)
Source code inllama_cpp/llama_cpp.py
llama_state_seq_load_file(ctx,filepath,dest_seq_id,tokens_out,n_token_capacity,n_token_count_out)
Source code inllama_cpp/llama_cpp.py
llama_batch_get_one(tokens,n_tokens)
Return batch for single sequence of tokens
NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
Source code inllama_cpp/llama_cpp.py
llama_batch_init(n_tokens,embd,n_seq_max)
Allocates a batch of tokens on the heap that can hold a maximum of n_tokensEach token can be assigned up to n_seq_max sequence idsThe batch has to be freed with llama_batch_free()If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)Otherwise, llama_batch.token will be allocated to store n_tokens llama_tokenThe rest of the llama_batch members are allocated with size n_tokensAll members are left uninitialized
Source code inllama_cpp/llama_cpp.py
llama_batch_free(batch)
llama_encode(ctx,batch)
Process a batch of tokens using the encoder.0 - success< 0 - error
llama_decode(ctx,batch)
Process a batch of tokens.0 - success1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)2 - aborted (processed ubatches will remain in the context's memory)-1 - invalid input batch< -1 - fatal error (processed ubatches will remain in the context's memory)
Source code inllama_cpp/llama_cpp.py
llama_set_n_threads(ctx,n_threads,n_threads_batch)
Set the number of threads used for decodingn_threads is the number of threads used for generation (single token)n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
Source code inllama_cpp/llama_cpp.py
llama_n_threads(ctx)
Get the number of threads used for generation of a single token
llama_n_threads_batch(ctx)
Get the number of threads used for prompt and batch processing (multiple token)
llama_set_embeddings(ctx,embeddings)
Set whether the context outputs embeddings or not
llama_set_causal_attn(ctx,causal_attn)
Set whether to use causal attention or notIf set to true, the model will only attend to the past tokens
Source code inllama_cpp/llama_cpp.py
llama_set_warmup(ctx,warmup)
Set whether the model is in warmup mode or notIf true, all model tensors are activated during llama_decode() to load and cache their weights.
Source code inllama_cpp/llama_cpp.py
llama_set_abort_callback(ctx,abort_callback,abort_callback_data)
Set abort callback
Source code inllama_cpp/llama_cpp.py
llama_synchronize(ctx)
Wait until all computations are finishedThis is automatically done when using one of the functions below to obtain the computation resultsand is not necessary to call it explicitly in most cases
Source code inllama_cpp/llama_cpp.py
llama_get_logits(ctx)
Token logits obtained from the last call to llama_decode()The logits for which llama_batch.logits[i] != 0 are stored contiguouslyin the order they have appeared in the batch.Rows: number of tokens for which llama_batch.logits[i] != 0Cols: n_vocab
Returns:
CtypesArray[c_float]
–Pointer to the logits buffer of shape (n_tokens, n_vocab)
Source code inllama_cpp/llama_cpp.py
llama_get_logits_ith(ctx,i)
Logits for the ith token. Equivalent to:llama_get_logits(ctx) + i*n_vocab
Source code inllama_cpp/llama_cpp.py
llama_get_embeddings(ctx)
Get the embeddings for the inputshape: [n_embd] (1-dimensional)
Source code inllama_cpp/llama_cpp.py
llama_get_embeddings_ith(ctx,i)
Get the embeddings for the ith sequencellama_get_embeddings(ctx) + i*n_embd
Source code inllama_cpp/llama_cpp.py
llama_get_embeddings_seq(ctx,seq_id)
Get the embeddings for a sequence idReturns NULL if pooling_type is LLAMA_POOLING_TYPE_NONEshape: [n_embd] (1-dimensional)
Source code inllama_cpp/llama_cpp.py
llama_vocab_get_text(vocab,token)
llama_vocab_get_score(vocab,token)
llama_vocab_get_attr(vocab,token)
llama_vocab_is_eog(vocab,token)
Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)
Source code inllama_cpp/llama_cpp.py
llama_vocab_is_control(vocab,token)
Identify if Token Id is a control token or a render-able token
Source code inllama_cpp/llama_cpp.py
llama_vocab_bos(vocab)
llama_vocab_eos(vocab)
llama_vocab_eot(vocab)
llama_vocab_sep(vocab)
llama_vocab_nl(vocab)
llama_vocab_pad(vocab)
llama_vocab_get_add_bos(vocab)
llama_vocab_get_add_eos(vocab)
llama_vocab_get_add_sep(vocab)
llama_vocab_fim_pre(vocab)
llama_vocab_fim_suf(vocab)
llama_vocab_fim_mid(vocab)
llama_vocab_fim_pad(vocab)
llama_vocab_fim_rep(vocab)
llama_vocab_fim_sep(vocab)
llama_token_get_text(vocab,token)
llama_token_get_score(vocab,token)
llama_token_get_attr(vocab,token)
llama_token_is_eog(vocab,token)
llama_token_is_control(vocab,token)
llama_token_bos(vocab)
llama_token_eos(vocab)
llama_token_eot(vocab)
llama_token_cls(vocab)
llama_token_sep(vocab)
llama_token_nl(vocab)
llama_token_pad(vocab)
llama_add_bos_token(vocab)
llama_add_eos_token(vocab)
llama_token_fim_pre(vocab)
llama_token_fim_suf(vocab)
llama_token_fim_mid(vocab)
llama_token_fim_pad(vocab)
llama_token_fim_rep(vocab)
llama_token_fim_sep(vocab)
llama_vocab_cls(vocab)
llama_tokenize(vocab,text,text_len,tokens,n_tokens_max,add_special,parse_special)
Convert the provided text into tokens.
Parameters:
vocab
(llama_vocab_p
) –The vocabulary to use for tokenization.
text
(bytes
) –The text to tokenize.
text_len
(Union[c_int,int]
) –The length of the text.
tokens
(CtypesArray[llama_token]
) –The tokens pointer must be large enough to hold the resulting tokens.
n_max_tokens
–The maximum number of tokens to return.
add_special
(Union[c_bool,bool]
) –Allow adding special tokens if the model is configured to do so.
parse_special
(Union[c_bool,bool]
) –Allow parsing special tokens.
Returns:
int
–Returns the number of tokens on success, no more than n_tokens_max
int
–Returns a negative number on failure - the number of tokens that would have been returned
Source code inllama_cpp/llama_cpp.py
llama_token_to_piece(vocab,token,buf,length,lstrip,special)
Token Id -> Piece.Uses the vocabulary in the provided context.Does not write null terminator to the buffer.User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
Parameters:
vocab
(llama_vocab_p
) –The vocabulary to use for tokenization.
token
(Union[llama_token,int]
) –The token to convert.
buf
(Union[c_char_p,bytes,CtypesArray[c_char]]
) –The buffer to write the token to.
length
(Union[c_int,int]
) –The length of the buffer.
lstrip
(Union[c_int,int]
) –The number of leading spaces to skip.
special
(Union[c_bool,bool]
) –If true, special tokens are rendered in the output.
Source code inllama_cpp/llama_cpp.py
llama_detokenize(vocab,tokens,n_tokens,text,text_len_max,remove_special,unparse_special)
Convert the provided tokens into text (inverse of llama_tokenize()).
Parameters:
vocab
(llama_vocab_p
) –The vocabulary to use for tokenization.
tokens
(CtypesArray[llama_token]
) –The tokens to convert.
n_tokens
(Union[c_int,int]
) –The number of tokens.
text
(bytes
) –The buffer to write the text to.
text_len_max
(Union[c_int,int]
) –The length of the buffer.
remove_special
(Union[c_bool,bool]
) –Allow to remove BOS and EOS tokens if model is configured to do so.
unparse_special
(Union[c_bool,bool]
) –If true, special tokens are rendered in the output.
Source code inllama_cpp/llama_cpp.py
llama_chat_apply_template(tmpl,chat,n_msg,add_ass,buf,length)
Apply chat template.
Parameters:
tmpl
(bytes
) –Template to use. If None, uses model's default
chat
(CtypesArray[llama_chat_message]
) –Array of chat messages
n_msg
(int
) –Number of messages
add_ass
(bool
) –Whether to end prompt with assistant token
buf
(bytes
) –Output buffer
length
(int
) –Buffer length
Returns:
int
–Number of bytes written, or needed if buffer too small
Source code inllama_cpp/llama_cpp.py
llama_chat_builtin_templates(output,len)
Get list of built-in chat templates.
Parameters:
output
(CtypesArray[bytes]
) –Output buffer to store template names.
len
(Union[c_size_t,int]
) –Length of the output buffer.
Returns:
Source code inllama_cpp/llama_cpp.py
llama_sampler_context_t=ctypes.c_void_p
module-attribute
llama_sampler_i
llama_sampler
llama_sampler_p=CtypesPointer[llama_sampler]
module-attribute
llama_sampler_p_ctypes=ctypes.POINTER(llama_sampler)
module-attribute
llama_sampler_i_name=ctypes.CFUNCTYPE(ctypes.c_char_p,llama_sampler_p_ctypes)
module-attribute
llama_sampler_i_accept=ctypes.CFUNCTYPE(None,llama_sampler_p_ctypes,llama_token)
module-attribute
llama_sampler_i_apply=ctypes.CFUNCTYPE(None,llama_sampler_p_ctypes,llama_token_data_array_p)
module-attribute
llama_sampler_i_reset=ctypes.CFUNCTYPE(None,llama_sampler_p_ctypes)
module-attribute
llama_sampler_i_clone=ctypes.CFUNCTYPE(llama_sampler_p_ctypes,llama_sampler_p_ctypes)
module-attribute
llama_sampler_i_free=ctypes.CFUNCTYPE(None,llama_sampler_p_ctypes)
module-attribute
llama_sampler_init(iface,ctx)
Source code inllama_cpp/llama_cpp.py
llama_sampler_name(smpl)
llama_sampler_accept(smpl,token)
llama_sampler_apply(smpl,cur_p)
llama_sampler_reset(smpl)
llama_sampler_clone(smpl)
llama_sampler_free(smpl)
llama_sampler_chain_init(params)
llama_sampler_chain_add(chain,smpl)
llama_sampler_chain_get(chain,i)
llama_sampler_chain_n(chain)
llama_sampler_chain_remove(chain,i)
llama_sampler_init_greedy()
llama_sampler_init_dist(seed)
llama_sampler_init_softmax()
llama_sampler_init_top_k(k)
llama_sampler_init_top_p(p,min_keep)
llama_sampler_init_min_p(p,min_keep)
llama_sampler_init_typical(p,min_keep)
llama_sampler_init_temp(t)
llama_sampler_init_temp_ext(t,delta,exponent)
llama_sampler_init_xtc(p,t,min_keep,seed)
llama_sampler_init_top_n_sigma(n)
llama_sampler_init_mirostat(n_vocab,seed,tau,eta,m)
Source code inllama_cpp/llama_cpp.py
llama_sampler_init_mirostat_v2(seed,tau,eta)
llama_sampler_init_grammar(vocab,grammar_str,grammar_root)
Source code inllama_cpp/llama_cpp.py
llama_sampler_init_grammar_lazy(vocab,grammar_str,grammar_root,trigger_words,num_trigger_words,trigger_tokens,num_trigger_tokens)
Source code inllama_cpp/llama_cpp.py
llama_sampler_init_grammar_lazy_patterns(vocab,grammar_str,grammar_root,trigger_patterns,num_trigger_patterns,trigger_tokens,num_trigger_tokens)
Source code inllama_cpp/llama_cpp.py
llama_sampler_init_penalties(penalty_last_n,penalty_repeat,penalty_freq,penalty_present)
Source code inllama_cpp/llama_cpp.py
llama_sampler_init_dry(vocab,n_ctx_train,dry_multiplier,dry_base,dry_allowed_length,dry_penalty_last_n,seq_breakers,num_breakers)
Source code inllama_cpp/llama_cpp.py
llama_sampler_init_logit_bias(n_vocab,n_logit_bias,logit_bias)
Source code inllama_cpp/llama_cpp.py
llama_sampler_init_infill(vocab)
llama_sampler_get_seed(smpl)
llama_sampler_sample(smpl,ctx,idx)
llama_split_path(split_path,maxlen,path_prefix,split_no,split_count)
Build a split GGUF final path for this chunk.
Source code inllama_cpp/llama_cpp.py
llama_split_prefix(split_prefix,maxlen,split_path,split_no,split_count)
Extract the path prefix from the split_path if and only if the split_no and split_count match.
Source code inllama_cpp/llama_cpp.py
llama_print_system_info()
llama_log_set(log_callback,user_data)
Set callback for all future logging events.
If this is not called, or NULL is supplied, everything is output on stderr.
Source code inllama_cpp/llama_cpp.py
llama_perf_context_data
Bases:Structure
Source code inllama_cpp/llama_cpp.py
llama_perf_sampler_data
llama_perf_context(ctx)
llama_perf_context_print(ctx)
llama_perf_context_reset(ctx)
llama_perf_sampler(chain)
llama_perf_sampler_print(chain)
llama_perf_sampler_reset(chain)
llama_opt_param_filter=ctypes.CFUNCTYPE(ctypes.c_bool,ctypes.c_void_p,ctypes.c_void_p)
module-attribute
llama_opt_param_filter_all(tensor,userdata)
llama_opt_params
Bases:Structure
Source code inllama_cpp/llama_cpp.py
llama_opt_init(lctx,model,lopt_params)
llama_opt_epoch(lctx,dataset,result_train,result_eval,idata_split,callback_train,callback_eval)
Source code inllama_cpp/llama_cpp.py
LLAMA_MAX_DEVICES=_lib.llama_max_devices()
module-attribute
LLAMA_DEFAULT_SEED=4294967295
module-attribute
LLAMA_TOKEN_NULL=-1
module-attribute
LLAMA_FILE_MAGIC_GGLA=1734831201
module-attribute
LLAMA_FILE_MAGIC_GGSN=1734833006
module-attribute
LLAMA_FILE_MAGIC_GGSQ=1734833009
module-attribute
LLAMA_SESSION_MAGIC=LLAMA_FILE_MAGIC_GGSN
module-attribute
LLAMA_SESSION_VERSION=9
module-attribute
LLAMA_STATE_SEQ_MAGIC=LLAMA_FILE_MAGIC_GGSQ
module-attribute
LLAMA_STATE_SEQ_VERSION=2
module-attribute
LLAMA_VOCAB_TYPE_NONE=0
module-attribute
For models without vocab
LLAMA_VOCAB_TYPE_SPM=1
module-attribute
LLaMA tokenizer based on byte-level BPE with byte fallback
LLAMA_VOCAB_TYPE_BPE=2
module-attribute
GPT-2 tokenizer based on byte-level BPE
LLAMA_VOCAB_TYPE_WPM=3
module-attribute
BERT tokenizer based on WordPiece
LLAMA_VOCAB_TYPE_UGM=4
module-attribute
T5 tokenizer based on Unigram
LLAMA_VOCAB_TYPE_RWKV=5
module-attribute
RWKV tokenizer based on greedy tokenization
LLAMA_VOCAB_TYPE_PLAMO2=6
module-attribute
PLaMo-2 tokenizer based on Aho-Corasick with dynamic programming
LLAMA_VOCAB_PRE_TYPE_DEFAULT=0
module-attribute
LLAMA_VOCAB_PRE_TYPE_LLAMA3=1
module-attribute
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM=2
module-attribute
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER=3
module-attribute
LLAMA_VOCAB_PRE_TYPE_FALCON=4
module-attribute
LLAMA_VOCAB_PRE_TYPE_MPT=5
module-attribute
LLAMA_VOCAB_PRE_TYPE_STARCODER=6
module-attribute
LLAMA_VOCAB_PRE_TYPE_GPT2=7
module-attribute
LLAMA_VOCAB_PRE_TYPE_REFACT=8
module-attribute
LLAMA_VOCAB_PRE_TYPE_COMMAND_R=9
module-attribute
LLAMA_VOCAB_PRE_TYPE_STABLELM2=10
module-attribute
LLAMA_VOCAB_PRE_TYPE_QWEN2=11
module-attribute
LLAMA_VOCAB_PRE_TYPE_OLMO=12
module-attribute
LLAMA_VOCAB_PRE_TYPE_DBRX=13
module-attribute
LLAMA_VOCAB_PRE_TYPE_SMAUG=14
module-attribute
LLAMA_VOCAB_PRE_TYPE_PORO=15
module-attribute
LLAMA_VOCAB_PRE_TYPE_CHATGLM3=16
module-attribute
LLAMA_VOCAB_PRE_TYPE_CHATGLM4=17
module-attribute
LLAMA_VOCAB_PRE_TYPE_VIKING=18
module-attribute
LLAMA_VOCAB_PRE_TYPE_JAIS=19
module-attribute
LLAMA_VOCAB_PRE_TYPE_TEKKEN=20
module-attribute
LLAMA_VOCAB_PRE_TYPE_SMOLLM=21
module-attribute
LLAMA_VOCAB_PRE_TYPE_CODESHELL=22
module-attribute
LLAMA_VOCAB_PRE_TYPE_BLOOM=23
module-attribute
LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH=24
module-attribute
LLAMA_VOCAB_PRE_TYPE_EXAONE=25
module-attribute
LLAMA_VOCAB_PRE_TYPE_CHAMELEON=26
module-attribute
LLAMA_VOCAB_PRE_TYPE_MINERVA=27
module-attribute
LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM=28
module-attribute
LLAMA_VOCAB_PRE_TYPE_GPT4O=29
module-attribute
LLAMA_VOCAB_PRE_TYPE_SUPERBPE=30
module-attribute
LLAMA_VOCAB_PRE_TYPE_TRILLION=31
module-attribute
LLAMA_VOCAB_PRE_TYPE_BAILINGMOE=32
module-attribute
LLAMA_VOCAB_PRE_TYPE_LLAMA4=33
module-attribute
LLAMA_VOCAB_PRE_TYPE_PIXTRAL=34
module-attribute
LLAMA_VOCAB_PRE_TYPE_SEED_CODER=35
module-attribute
LLAMA_ROPE_TYPE_NONE=-1
module-attribute
LLAMA_ROPE_TYPE_NORM=0
module-attribute
LLAMA_ROPE_TYPE_NEOX=2
module-attribute
LLAMA_ROPE_TYPE_MROPE=8
module-attribute
LLAMA_ROPE_TYPE_VISION=24
module-attribute
LLAMA_TOKEN_TYPE_UNDEFINED=0
module-attribute
LLAMA_TOKEN_TYPE_NORMAL=1
module-attribute
LLAMA_TOKEN_TYPE_UNKNOWN=2
module-attribute
LLAMA_TOKEN_TYPE_CONTROL=3
module-attribute
LLAMA_TOKEN_TYPE_USER_DEFINED=4
module-attribute
LLAMA_TOKEN_TYPE_UNUSED=5
module-attribute
LLAMA_TOKEN_TYPE_BYTE=6
module-attribute
LLAMA_TOKEN_ATTR_UNDEFINED=0
module-attribute
LLAMA_TOKEN_ATTR_UNKNOWN=1<<0
module-attribute
LLAMA_TOKEN_ATTR_UNUSED=1<<1
module-attribute
LLAMA_TOKEN_ATTR_NORMAL=1<<2
module-attribute
LLAMA_TOKEN_ATTR_CONTROL=1<<3
module-attribute
LLAMA_TOKEN_ATTR_USER_DEFINED=1<<4
module-attribute
LLAMA_TOKEN_ATTR_BYTE=1<<5
module-attribute
LLAMA_TOKEN_ATTR_NORMALIZED=1<<6
module-attribute
LLAMA_TOKEN_ATTR_LSTRIP=1<<7
module-attribute
LLAMA_TOKEN_ATTR_RSTRIP=1<<8
module-attribute
LLAMA_TOKEN_ATTR_SINGLE_WORD=1<<9
module-attribute
LLAMA_FTYPE_ALL_F32=0
module-attribute
LLAMA_FTYPE_MOSTLY_F16=1
module-attribute
LLAMA_FTYPE_MOSTLY_Q4_0=2
module-attribute
LLAMA_FTYPE_MOSTLY_Q4_1=3
module-attribute
LLAMA_FTYPE_MOSTLY_Q8_0=7
module-attribute
LLAMA_FTYPE_MOSTLY_Q5_0=8
module-attribute
LLAMA_FTYPE_MOSTLY_Q5_1=9
module-attribute
LLAMA_FTYPE_MOSTLY_Q2_K=10
module-attribute
LLAMA_FTYPE_MOSTLY_Q3_K_S=11
module-attribute
LLAMA_FTYPE_MOSTLY_Q3_K_M=12
module-attribute
LLAMA_FTYPE_MOSTLY_Q3_K_L=13
module-attribute
LLAMA_FTYPE_MOSTLY_Q4_K_S=14
module-attribute
LLAMA_FTYPE_MOSTLY_Q4_K_M=15
module-attribute
LLAMA_FTYPE_MOSTLY_Q5_K_S=16
module-attribute
LLAMA_FTYPE_MOSTLY_Q5_K_M=17
module-attribute
LLAMA_FTYPE_MOSTLY_Q6_K=18
module-attribute
LLAMA_FTYPE_MOSTLY_IQ2_XXS=19
module-attribute
LLAMA_FTYPE_MOSTLY_IQ2_XS=20
module-attribute
LLAMA_FTYPE_MOSTLY_Q2_K_S=21
module-attribute
LLAMA_FTYPE_MOSTLY_IQ3_XS=22
module-attribute
LLAMA_FTYPE_MOSTLY_IQ3_XXS=23
module-attribute
LLAMA_FTYPE_MOSTLY_IQ1_S=24
module-attribute
LLAMA_FTYPE_MOSTLY_IQ4_NL=25
module-attribute
LLAMA_FTYPE_MOSTLY_IQ3_S=26
module-attribute
LLAMA_FTYPE_MOSTLY_IQ3_M=27
module-attribute
LLAMA_FTYPE_MOSTLY_IQ2_S=28
module-attribute
LLAMA_FTYPE_MOSTLY_IQ2_M=29
module-attribute
LLAMA_FTYPE_MOSTLY_IQ4_XS=30
module-attribute
LLAMA_FTYPE_MOSTLY_IQ1_M=31
module-attribute
LLAMA_FTYPE_MOSTLY_BF16=32
module-attribute
LLAMA_FTYPE_MOSTLY_TQ1_0=36
module-attribute
LLAMA_FTYPE_MOSTLY_TQ2_0=37
module-attribute
LLAMA_FTYPE_GUESSED=1024
module-attribute
LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED=-1
module-attribute
LLAMA_ROPE_SCALING_TYPE_NONE=0
module-attribute
LLAMA_ROPE_SCALING_TYPE_LINEAR=1
module-attribute
LLAMA_ROPE_SCALING_TYPE_YARN=2
module-attribute
LLAMA_ROPE_SCALING_TYPE_LONGROPE=3
module-attribute
LLAMA_ROPE_SCALING_TYPE_MAX_VALUE=LLAMA_ROPE_SCALING_TYPE_LONGROPE
module-attribute
LLAMA_POOLING_TYPE_UNSPECIFIED=-1
module-attribute
LLAMA_POOLING_TYPE_NONE=0
module-attribute
LLAMA_POOLING_TYPE_MEAN=1
module-attribute
LLAMA_POOLING_TYPE_CLS=2
module-attribute
LLAMA_POOLING_TYPE_LAST=3
module-attribute
LLAMA_POOLING_TYPE_RANK=4
module-attribute
LLAMA_ATTENTION_TYPE_UNSPECIFIED=-1
module-attribute
LLAMA_ATTENTION_TYPE_CAUSAL=0
module-attribute
LLAMA_ATTENTION_TYPE_NON_CAUSAL=1
module-attribute
LLAMA_SPLIT_MODE_NONE=0
module-attribute
LLAMA_SPLIT_MODE_LAYER=1
module-attribute
LLAMA_SPLIT_MODE_ROW=2
module-attribute
LLAMA_KV_OVERRIDE_TYPE_INT=0
module-attribute
LLAMA_KV_OVERRIDE_TYPE_FLOAT=1
module-attribute
LLAMA_KV_OVERRIDE_TYPE_BOOL=2
module-attribute
LLAMA_KV_OVERRIDE_TYPE_STR=3
module-attribute
Misc
llama_cpp.llama_types
Types and request signatures for OpenAI compatibility
NOTE: These types may change to match the OpenAI OpenAPI specification.
Based on the OpenAI OpenAPI specification:https://github.com/openai/openai-openapi/blob/master/openapi.yaml
JsonType=Union[None,int,str,bool,List[Any],Dict[str,Any]]
module-attribute
EmbeddingUsage
Embedding
CreateEmbeddingResponse
CompletionLogprobs
Bases:TypedDict
Source code inllama_cpp/llama_types.py
text_offset
instance-attribute
token_logprobs
instance-attribute
tokens
instance-attribute
top_logprobs
instance-attribute
CompletionChoice
Bases:TypedDict
Source code inllama_cpp/llama_types.py
text
instance-attribute
index
instance-attribute
logprobs
instance-attribute
finish_reason
instance-attribute
CompletionUsage
CreateCompletionResponse
Bases:TypedDict
Source code inllama_cpp/llama_types.py
id
instance-attribute
object
instance-attribute
created
instance-attribute
model
instance-attribute
choices
instance-attribute
usage
instance-attribute
ChatCompletionResponseFunctionCall
ChatCompletionResponseMessage
Bases:TypedDict
Source code inllama_cpp/llama_types.py
content
instance-attribute
tool_calls
instance-attribute
role
instance-attribute
function_call
instance-attribute
ChatCompletionFunction
ChatCompletionTopLogprobToken
ChatCompletionLogprobToken
Bases:ChatCompletionTopLogprobToken
Source code inllama_cpp/llama_types.py
token
instance-attribute
logprob
instance-attribute
bytes
instance-attribute
top_logprobs
instance-attribute
ChatCompletionLogprobs
ChatCompletionResponseChoice
Bases:TypedDict
Source code inllama_cpp/llama_types.py
index
instance-attribute
message
instance-attribute
logprobs
instance-attribute
finish_reason
instance-attribute
CreateChatCompletionResponse
Bases:TypedDict
Source code inllama_cpp/llama_types.py
id
instance-attribute
object
instance-attribute
created
instance-attribute
model
instance-attribute
choices
instance-attribute
usage
instance-attribute
ChatCompletionMessageToolCallChunkFunction
ChatCompletionMessageToolCallChunk
Bases:TypedDict
Source code inllama_cpp/llama_types.py
index
instance-attribute
id
instance-attribute
type
instance-attribute
function
instance-attribute
ChatCompletionStreamResponseDeltaEmpty
ChatCompletionStreamResponseDeltaFunctionCall
ChatCompletionStreamResponseDelta
Bases:TypedDict
Source code inllama_cpp/llama_types.py
content
instance-attribute
function_call
instance-attribute
tool_calls
instance-attribute
role
instance-attribute
ChatCompletionStreamResponseChoice
Bases:TypedDict
Source code inllama_cpp/llama_types.py
index
instance-attribute
delta
instance-attribute
finish_reason
instance-attribute
logprobs
instance-attribute
CreateChatCompletionStreamResponse
Bases:TypedDict
Source code inllama_cpp/llama_types.py
id
instance-attribute
model
instance-attribute
object
instance-attribute
created
instance-attribute
choices
instance-attribute
ChatCompletionFunctions
ChatCompletionFunctionCallOption
ChatCompletionRequestResponseFormat
ChatCompletionRequestMessageContentPartText
ChatCompletionRequestMessageContentPartImageImageUrl
ChatCompletionRequestMessageContentPartImage
ChatCompletionRequestMessageContentPart=Union[ChatCompletionRequestMessageContentPartText,ChatCompletionRequestMessageContentPartImage]
module-attribute
ChatCompletionRequestSystemMessage
ChatCompletionRequestUserMessage
ChatCompletionMessageToolCallFunction
ChatCompletionMessageToolCall
ChatCompletionMessageToolCalls=List[ChatCompletionMessageToolCall]
module-attribute
ChatCompletionRequestAssistantMessageFunctionCall
ChatCompletionRequestAssistantMessage
Bases:TypedDict