Movatterモバイル変換


[0]ホーム

URL:


Skip to content

API Reference

High Level API

High-level Python bindings for llama.cpp.

llama_cpp.Llama

High-level Python wrapper for a llama.cpp model.

Source code inllama_cpp/llama.py
  55  56  57  58  59  60  61  62  63  64  65  66  67  68  69  70  71  72  73  74  75  76  77  78  79  80  81  82  83  84  85  86  87  88  89  90  91  92  93  94  95  96  97  98  99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364
classLlama:"""High-level Python wrapper for a llama.cpp model."""__backend_initialized=Falsedef__init__(self,model_path:str,*,# Model Paramsn_gpu_layers:int=0,split_mode:int=llama_cpp.LLAMA_SPLIT_MODE_LAYER,main_gpu:int=0,tensor_split:Optional[List[float]]=None,vocab_only:bool=False,use_mmap:bool=True,use_mlock:bool=False,kv_overrides:Optional[Dict[str,Union[bool,int,float,str]]]=None,# Context Paramsseed:int=llama_cpp.LLAMA_DEFAULT_SEED,n_ctx:int=512,n_batch:int=512,n_ubatch:int=512,n_threads:Optional[int]=None,n_threads_batch:Optional[int]=None,rope_scaling_type:Optional[int]=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,pooling_type:int=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,rope_freq_base:float=0.0,rope_freq_scale:float=0.0,yarn_ext_factor:float=-1.0,yarn_attn_factor:float=1.0,yarn_beta_fast:float=32.0,yarn_beta_slow:float=1.0,yarn_orig_ctx:int=0,logits_all:bool=False,embedding:bool=False,offload_kqv:bool=True,flash_attn:bool=False,op_offloat:Optional[bool]=None,swa_full:Optional[bool]=None,# Sampling Paramsno_perf:bool=False,last_n_tokens_size:int=64,# LoRA Paramslora_base:Optional[str]=None,lora_scale:float=1.0,lora_path:Optional[str]=None,# Backend Paramsnuma:Union[bool,int]=False,# Chat Format Paramschat_format:Optional[str]=None,chat_handler:Optional[llama_chat_format.LlamaChatCompletionHandler]=None,# Speculative Decodingdraft_model:Optional[LlamaDraftModel]=None,# Tokenizer Overridetokenizer:Optional[BaseLlamaTokenizer]=None,# KV cache quantizationtype_k:Optional[int]=None,type_v:Optional[int]=None,# Miscspm_infill:bool=False,verbose:bool=True,# Extra Params**kwargs,# type: ignore):"""Load a llama.cpp model from `model_path`.        Examples:            Basic usage            >>> import llama_cpp            >>> model = llama_cpp.Llama(            ...     model_path="path/to/model",            ... )            >>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"])            the lazy dog            Loading a chat model            >>> import llama_cpp            >>> model = llama_cpp.Llama(            ...     model_path="path/to/model",            ...     chat_format="llama-2",            ... )            >>> print(model.create_chat_completion(            ...     messages=[{            ...         "role": "user",            ...         "content": "what is the meaning of life?"            ...     }]            ... ))        Args:            model_path: Path to the model.            n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.            split_mode: How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options.            main_gpu: main_gpu interpretation depends on split_mode: LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_MODE_LAYER: ignored            tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split.            vocab_only: Only load the vocabulary no weights.            use_mmap: Use mmap if possible.            use_mlock: Force the system to keep the model in RAM.            kv_overrides: Key-value overrides for the model.            seed: RNG seed, -1 for random            n_ctx: Text context, 0 = from model            n_batch: Prompt processing maximum batch size            n_ubatch: Physical batch size            n_threads: Number of threads to use for generation            n_threads_batch: Number of threads to use for batch processing            rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054            pooling_type: Pooling type, from `enum llama_pooling_type`.            rope_freq_base: RoPE base frequency, 0 = from model            rope_freq_scale: RoPE frequency scaling factor, 0 = from model            yarn_ext_factor: YaRN extrapolation mix factor, negative = from model            yarn_attn_factor: YaRN magnitude scaling factor            yarn_beta_fast: YaRN low correction dim            yarn_beta_slow: YaRN high correction dim            yarn_orig_ctx: YaRN original context size            logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.            embedding: Embedding mode only.            offload_kqv: Offload K, Q, V to GPU.            flash_attn: Use flash attention.            op_offloat: offload host tensor operations to device            swa_full: use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)            no_perf: Measure performance timings.            last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.            lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.            lora_path: Path to a LoRA file to apply to the model.            numa: numa policy            chat_format: String specifying the chat format to use when calling create_chat_completion.            chat_handler: Optional chat handler to use when calling create_chat_completion.            draft_model: Optional draft model to use for speculative decoding.            tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp.            verbose: Print verbose output to stderr.            type_k: KV cache data type for K (default: f16)            type_v: KV cache data type for V (default: f16)            spm_infill: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.        Raises:            ValueError: If the model path does not exist.        Returns:            A Llama instance.        """self.verbose=verboseself._stack=contextlib.ExitStack()set_verbose(verbose)ifnotLlama.__backend_initialized:withsuppress_stdout_stderr(disable=verbose):llama_cpp.llama_backend_init()Llama.__backend_initialized=Trueifisinstance(numa,bool):self.numa=(llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTEifnumaelsellama_cpp.GGML_NUMA_STRATEGY_DISABLED)else:self.numa=numaifself.numa!=llama_cpp.GGML_NUMA_STRATEGY_DISABLED:withsuppress_stdout_stderr(disable=verbose):llama_cpp.llama_numa_init(self.numa)self.model_path=model_path# Model Paramsself.model_params=llama_cpp.llama_model_default_params()self.model_params.n_gpu_layers=(0x7FFFFFFFifn_gpu_layers==-1elsen_gpu_layers)# 0x7FFFFFFF is INT32 max, will be auto set to all layersself.model_params.split_mode=split_modeself.model_params.main_gpu=main_gpuself.tensor_split=tensor_splitself._c_tensor_split=Noneifself.tensor_splitisnotNone:iflen(self.tensor_split)>llama_cpp.LLAMA_MAX_DEVICES:raiseValueError(f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}")# Type conversion and expand the list to the length of LLAMA_MAX_DEVICESFloatArray=ctypes.c_float*llama_cpp.LLAMA_MAX_DEVICESself._c_tensor_split=FloatArray(*tensor_split# type: ignore)# keep a reference to the array so it is not gc'dself.model_params.tensor_split=self._c_tensor_splitself.model_params.vocab_only=vocab_onlyself.model_params.use_mmap=use_mmapiflora_pathisNoneelseFalseself.model_params.use_mlock=use_mlock# kv_overrides is the original python dictself.kv_overrides=kv_overridesifkv_overridesisnotNone:# _kv_overrides_array is a ctypes.Array of llama_model_kv_override Structskvo_array_len=len(kv_overrides)+1# for sentinel elementself._kv_overrides_array=(llama_cpp.llama_model_kv_override*kvo_array_len)()fori,(k,v)inenumerate(kv_overrides.items()):self._kv_overrides_array[i].key=k.encode("utf-8")ifisinstance(v,bool):self._kv_overrides_array[i].tag=llama_cpp.LLAMA_KV_OVERRIDE_TYPE_BOOLself._kv_overrides_array[i].value.val_bool=velifisinstance(v,int):self._kv_overrides_array[i].tag=llama_cpp.LLAMA_KV_OVERRIDE_TYPE_INTself._kv_overrides_array[i].value.val_i64=velifisinstance(v,float):self._kv_overrides_array[i].tag=llama_cpp.LLAMA_KV_OVERRIDE_TYPE_FLOATself._kv_overrides_array[i].value.val_f64=velifisinstance(v,str):# type: ignorev_bytes=v.encode("utf-8")iflen(v_bytes)>128:# TODO: Make this a constantraiseValueError(f"Value for{k} is too long:{v}")v_bytes=v_bytes.ljust(128,b"\0")self._kv_overrides_array[i].tag=llama_cpp.LLAMA_KV_OVERRIDE_TYPE_STR# copy min(v_bytes, 128) to str_valueaddress=typing.cast(int,ctypes.addressof(self._kv_overrides_array[i].value)+llama_cpp.llama_model_kv_override_value.val_str.offset,)buffer_start=ctypes.cast(address,ctypes.POINTER(ctypes.c_char))ctypes.memmove(buffer_start,v_bytes,128,)else:raiseValueError(f"Unknown value type for{k}:{v}")self._kv_overrides_array[-1].key=b"\0"# ensure sentinel element is zeroedself.model_params.kv_overrides=self._kv_overrides_arrayself.n_batch=min(n_ctx,n_batch)# ???self.n_threads=n_threadsormax(multiprocessing.cpu_count()//2,1)self.n_threads_batch=n_threads_batchormultiprocessing.cpu_count()# Used by the samplerself._seed=seedorllama_cpp.LLAMA_DEFAULT_SEED# Context Paramsself.context_params=llama_cpp.llama_context_default_params()self.context_params.n_ctx=n_ctxself.context_params.n_batch=self.n_batchself.context_params.n_ubatch=min(self.n_batch,n_ubatch)self.context_params.n_threads=self.n_threadsself.context_params.n_threads_batch=self.n_threads_batchself.context_params.rope_scaling_type=(rope_scaling_typeifrope_scaling_typeisnotNoneelsellama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED)self.context_params.pooling_type=pooling_typeself.context_params.rope_freq_base=(rope_freq_baseifrope_freq_base!=0.0else0)self.context_params.rope_freq_scale=(rope_freq_scaleifrope_freq_scale!=0.0else0)self.context_params.yarn_ext_factor=(yarn_ext_factorifyarn_ext_factor!=0.0else0)self.context_params.yarn_attn_factor=(yarn_attn_factorifyarn_attn_factor!=0.0else0)self.context_params.yarn_beta_fast=(yarn_beta_fastifyarn_beta_fast!=0.0else0)self.context_params.yarn_beta_slow=(yarn_beta_slowifyarn_beta_slow!=0.0else0)self.context_params.yarn_orig_ctx=yarn_orig_ctxifyarn_orig_ctx!=0else0self._logits_all=logits_allifdraft_modelisNoneelseTrueself.context_params.embeddings=embedding# TODO: Rename to embeddingsself.context_params.offload_kqv=offload_kqvself.context_params.flash_attn=flash_attnifop_offloatisnotNone:self.context_params.op_offloat=op_offloatifswa_fullisnotNone:self.context_params.swa_full=swa_full#  KV cache quantizationiftype_kisnotNone:self.context_params.type_k=type_kiftype_visnotNone:self.context_params.type_v=type_v# Sampling Paramsself.context_params.no_perf=no_perfself.last_n_tokens_size=last_n_tokens_sizeself.cache:Optional[BaseLlamaCache]=Noneself.lora_base=lora_baseself.lora_scale=lora_scaleself.lora_path=lora_pathself.spm_infill=spm_infillifnotos.path.exists(model_path):raiseValueError(f"Model path does not exist:{model_path}")self._model=self._stack.enter_context(contextlib.closing(internals.LlamaModel(path_model=self.model_path,params=self.model_params,verbose=self.verbose,)))# Override tokenizerself.tokenizer_=tokenizerorLlamaTokenizer(self)# Set the default value for the context and correct the batchifn_ctx==0:n_ctx=self._model.n_ctx_train()self.n_batch=min(n_ctx,n_batch)self.context_params.n_ctx=self._model.n_ctx_train()self.context_params.n_batch=self.n_batchself.context_params.n_ubatch=min(self.n_batch,n_ubatch)self._ctx=self._stack.enter_context(contextlib.closing(internals.LlamaContext(model=self._model,params=self.context_params,verbose=self.verbose,)))self._batch=self._stack.enter_context(contextlib.closing(internals.LlamaBatch(n_tokens=self.n_batch,embd=0,n_seq_max=self.context_params.n_ctx,verbose=self.verbose,)))self._lora_adapter:Optional[llama_cpp.llama_adapter_lora_p]=Noneifself.lora_path:self._lora_adapter=llama_cpp.llama_adapter_lora_init(self._model.model,self.lora_path.encode("utf-8"),)ifself._lora_adapterisNone:raiseRuntimeError(f"Failed to initialize LoRA adapter from lora path:{self.lora_path}")deffree_lora_adapter():ifself._lora_adapterisNone:returnllama_cpp.llama_adapter_lora_free(self._lora_adapter)self._lora_adapter=Noneself._stack.callback(free_lora_adapter)ifllama_cpp.llama_set_adapter_lora(self._ctx.ctx,self._lora_adapter,self.lora_scale):raiseRuntimeError(f"Failed to set LoRA adapter from lora path:{self.lora_path}")ifself.verbose:print(llama_cpp.llama_print_system_info().decode("utf-8"),file=sys.stderr)self.chat_format=chat_formatself.chat_handler=chat_handlerself._chat_handlers:Dict[str,llama_chat_format.LlamaChatCompletionHandler]={}self.draft_model=draft_modelself._n_vocab=self.n_vocab()self._n_ctx=self.n_ctx()self._token_nl=self.token_nl()self._token_eos=self.token_eos()self._candidates=internals.LlamaTokenDataArray(n_vocab=self._n_vocab)self.n_tokens=0self.input_ids:npt.NDArray[np.intc]=np.ndarray((n_ctx,),dtype=np.intc)self.scores:npt.NDArray[np.single]=np.ndarray((n_ctxiflogits_all==Trueelsen_batch,self._n_vocab),dtype=np.single)self._mirostat_mu=ctypes.c_float(2.0*5.0)# TODO: Move this to sampling contexttry:self.metadata=self._model.metadata()exceptExceptionase:self.metadata={}ifself.verbose:print(f"Failed to load metadata:{e}",file=sys.stderr)ifself.verbose:print(f"Model metadata:{self.metadata}",file=sys.stderr)eos_token_id=self.token_eos()bos_token_id=self.token_bos()eos_token=(self._model.token_get_text(eos_token_id)ifeos_token_id!=-1else"")bos_token=(self._model.token_get_text(bos_token_id)ifbos_token_id!=-1else"")# Unfortunately the llama.cpp API does not return metadata arrays, so we can't get template names from tokenizer.chat_templatestemplate_choices=dict((name[10:],template)forname,templateinself.metadata.items()ifname.startswith("tokenizer.chat_template."))if"tokenizer.chat_template"inself.metadata:template_choices["chat_template.default"]=self.metadata["tokenizer.chat_template"]ifself.verboseandtemplate_choices:print(f"Available chat formats from metadata:{', '.join(template_choices.keys())}",file=sys.stderr,)forname,templateintemplate_choices.items():self._chat_handlers[name]=llama_chat_format.Jinja2ChatFormatter(template=template,eos_token=eos_token,bos_token=bos_token,stop_token_ids=[eos_token_id],).to_chat_handler()if(self.chat_formatisNoneandself.chat_handlerisNoneand"chat_template.default"intemplate_choices):chat_format=llama_chat_format.guess_chat_format_from_gguf_metadata(self.metadata)ifchat_formatisnotNone:self.chat_format=chat_formatifself.verbose:print(f"Guessed chat format:{chat_format}",file=sys.stderr)else:ifself.verbose:print(f"Using gguf chat template:{template_choices['chat_template.default']}",file=sys.stderr,)print(f"Using chat eos_token:{eos_token}",file=sys.stderr)print(f"Using chat bos_token:{bos_token}",file=sys.stderr)self.chat_format="chat_template.default"ifself.chat_formatisNoneandself.chat_handlerisNone:self.chat_format="llama-2"ifself.verbose:print(f"Using fallback chat format:{self.chat_format}",file=sys.stderr)self._sampler=None@propertydefctx(self)->llama_cpp.llama_context_p:returnself._ctx.ctx@propertydefmodel(self)->llama_cpp.llama_model_p:returnself._model.model@propertydef_input_ids(self)->npt.NDArray[np.intc]:returnself.input_ids[:self.n_tokens]@propertydef_scores(self)->npt.NDArray[np.single]:returnself.scores[:self.n_tokens,:]@propertydefeval_tokens(self)->Deque[int]:returndeque(self.input_ids[:self.n_tokens].tolist(),maxlen=self._n_ctx)@propertydefeval_logits(self)->Deque[List[float]]:returndeque(self.scores[:self.n_tokens,:].tolist(),maxlen=self._n_ctxifself._logits_allelse1,)deftokenize(self,text:bytes,add_bos:bool=True,special:bool=False)->List[int]:"""Tokenize a string.        Args:            text: The utf-8 encoded string to tokenize.            add_bos: Whether to add a beginning of sequence token.            special: Whether to tokenize special tokens.        Raises:            RuntimeError: If the tokenization failed.        Returns:            A list of tokens.        """returnself.tokenizer_.tokenize(text,add_bos,special)defdetokenize(self,tokens:List[int],prev_tokens:Optional[List[int]]=None,special:bool=False,)->bytes:"""Detokenize a list of tokens.        Args:            tokens: The list of tokens to detokenize.            prev_tokens: The list of previous tokens. Offset mapping will be performed if provided.            special: Whether to detokenize special tokens.        Returns:            The detokenized string.        """returnself.tokenizer_.detokenize(tokens,prev_tokens=prev_tokens,special=special)defset_cache(self,cache:Optional[BaseLlamaCache]):"""Set the cache.        Args:            cache: The cache to set.        """self.cache=cachedefset_seed(self,seed:int):"""Set the random seed.        Args:            seed: The random seed.        """self._seed=seeddefreset(self):"""Reset the model state."""self.n_tokens=0defeval(self,tokens:Sequence[int]):"""Evaluate a list of tokens.        Args:            tokens: The list of tokens to evaluate.        """self._ctx.kv_cache_seq_rm(-1,self.n_tokens,-1)foriinrange(0,len(tokens),self.n_batch):batch=tokens[i:min(len(tokens),i+self.n_batch)]n_past=self.n_tokensn_tokens=len(batch)self._batch.set_batch(batch=batch,n_past=n_past,logits_all=self._logits_all)self._ctx.decode(self._batch)# Save tokensself.input_ids[n_past:n_past+n_tokens]=batch# Save logitsifself._logits_all:rows=n_tokenscols=self._n_vocablogits=np.ctypeslib.as_array(self._ctx.get_logits(),shape=(rows*cols,))self.scores[n_past:n_past+n_tokens,:].reshape(-1)[::]=logitselse:# rows = 1# cols = self._n_vocab# logits = np.ctypeslib.as_array(#     self._ctx.get_logits(), shape=(rows * cols,)# )# self.scores[n_past + n_tokens - 1, :].reshape(-1)[::] = logits# NOTE: Now that sampling is done inside the sampler, logits are only needed for logprobs which requires logits_allpass# Update n_tokensself.n_tokens+=n_tokensdef_init_sampler(self,top_k:int=40,top_p:float=0.95,min_p:float=0.05,typical_p:float=1.0,temp:float=0.80,repeat_penalty:float=1.0,frequency_penalty:float=0.0,presence_penalty:float=0.0,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_eta:float=0.1,mirostat_tau:float=5.0,penalize_nl:bool=True,logits_processor:Optional[LogitsProcessorList]=None,grammar:Optional[LlamaGrammar]=None,):sampler=internals.LlamaSampler()iflogits_processorisnotNone:# Create and add a custom samplerdefapply_func(token_data_array:llama_cpp.llama_token_data_array_p):size=token_data_array.contents.sizedata_soa=token_data_array.contents.datadata_soa_address=ctypes.addressof(data_soa.contents)# NOTE: This is probably brokenrecarray=np.recarray(shape=(size,),dtype=np.dtype([("id",np.intc),("logit",np.single),("p",np.single)],align=True,),buf=(llama_cpp.llama_token_data*size).from_address(data_soa_address),)forlogit_processorinlogits_processor:recarray.logit[:]=logit_processor(self._input_ids,recarray.logit)sampler.add_custom(apply_func)sampler.add_penalties(# n_vocab=self._n_vocab,# special_eos_id=self._token_eos,# linefeed_id=self._token_nl,penalty_last_n=self.last_n_tokens_size,penalty_repeat=repeat_penalty,penalty_freq=frequency_penalty,penalty_present=presence_penalty,# penalize_nl=penalize_nl,# ignore_eos=False,)ifgrammarisnotNone:sampler.add_grammar(self._model,grammar)iftemp<0.0:sampler.add_softmax()sampler.add_dist(self._seed)eliftemp==0.0:sampler.add_greedy()else:ifmirostat_mode==1:mirostat_m=100sampler.add_mirostat(self._n_vocab,self._seed,mirostat_tau,mirostat_eta,mirostat_m,)elifmirostat_mode==2:sampler.add_mirostat_v2(self._seed,mirostat_tau,mirostat_eta,)else:n_probs=0min_keep=max(1,n_probs)sampler.add_top_k(top_k)sampler.add_typical(typical_p,min_keep)sampler.add_top_p(top_p,min_keep)sampler.add_min_p(min_p,min_keep)sampler.add_temp(temp)sampler.add_dist(self._seed)returnsamplerdefsample(self,top_k:int=40,top_p:float=0.95,min_p:float=0.05,typical_p:float=1.0,temp:float=0.80,repeat_penalty:float=1.0,frequency_penalty:float=0.0,presence_penalty:float=0.0,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_eta:float=0.1,mirostat_tau:float=5.0,penalize_nl:bool=True,logits_processor:Optional[LogitsProcessorList]=None,grammar:Optional[LlamaGrammar]=None,idx:Optional[int]=None,):"""Sample a token from the model.        Args:            top_k: The top-k sampling parameter.            top_p: The top-p sampling parameter.            temp: The temperature parameter.            repeat_penalty: The repeat penalty parameter.        Returns:            The sampled token.        """assertself.n_tokens>0tmp_sampler=Falseifself._samplerisNone:tmp_sampler=Trueself._sampler=self._init_sampler(top_k=top_k,top_p=top_p,min_p=min_p,typical_p=typical_p,temp=temp,repeat_penalty=repeat_penalty,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,penalize_nl=penalize_nl,logits_processor=logits_processor,grammar=grammar,)ridx=idx-self.n_tokensifidxisnotNoneelse-1assertself.ctxisnotNonetoken=self._sampler.sample(self._ctx,ridx)iftmp_sampler:self._sampler=Nonereturntokendefgenerate(self,tokens:Sequence[int],top_k:int=40,top_p:float=0.95,min_p:float=0.05,typical_p:float=1.0,temp:float=0.80,repeat_penalty:float=1.0,reset:bool=True,frequency_penalty:float=0.0,presence_penalty:float=0.0,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_tau:float=5.0,mirostat_eta:float=0.1,penalize_nl:bool=True,logits_processor:Optional[LogitsProcessorList]=None,stopping_criteria:Optional[StoppingCriteriaList]=None,grammar:Optional[LlamaGrammar]=None,)->Generator[int,Optional[Sequence[int]],None]:"""Create a generator of tokens from a prompt.        Examples:            >>> llama = Llama("models/ggml-7b.bin")            >>> tokens = llama.tokenize(b"Hello, world!")            >>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.0):            ...     print(llama.detokenize([token]))        Args:            tokens: The prompt tokens.            top_k: The top-k sampling parameter.            top_p: The top-p sampling parameter.            temp: The temperature parameter.            repeat_penalty: The repeat penalty parameter.            reset: Whether to reset the model state.        Yields:            The generated tokens.        """# Reset mirostat samplingself._mirostat_mu=ctypes.c_float(2.0*mirostat_tau)self._sampler=self._init_sampler(top_k=top_k,top_p=top_p,min_p=min_p,typical_p=typical_p,temp=temp,repeat_penalty=repeat_penalty,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,penalize_nl=penalize_nl,logits_processor=logits_processor,grammar=grammar,)# Check for kv cache prefix matchifresetandself.n_tokens>0:longest_prefix=0fora,binzip(self._input_ids,tokens[:-1]):ifa==b:longest_prefix+=1else:breakiflongest_prefix>0:reset=Falsetokens=tokens[longest_prefix:]self.n_tokens=longest_prefixifself.verbose:print(f"Llama.generate:{longest_prefix} prefix-match hit, "f"remaining{len(tokens)} prompt tokens to eval",file=sys.stderr,)# Reset the model stateifreset:self.reset()# # Reset the grammar# if grammar is not None:#     grammar.reset()sample_idx=self.n_tokens+len(tokens)-1tokens=list(tokens)# Eval and samplewhileTrue:self.eval(tokens)whilesample_idx<self.n_tokens:token=self.sample(top_k=top_k,top_p=top_p,min_p=min_p,typical_p=typical_p,temp=temp,repeat_penalty=repeat_penalty,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,logits_processor=logits_processor,grammar=grammar,penalize_nl=penalize_nl,idx=sample_idx,)sample_idx+=1ifstopping_criteriaisnotNoneandstopping_criteria(self._input_ids[:sample_idx],self._scores[sample_idx-self.n_tokens,:]):returntokens_or_none=yieldtokentokens.clear()tokens.append(token)iftokens_or_noneisnotNone:tokens.extend(tokens_or_none)ifsample_idx<self.n_tokensandtoken!=self._input_ids[sample_idx]:self.n_tokens=sample_idxself._ctx.kv_cache_seq_rm(-1,self.n_tokens,-1)breakifself.draft_modelisnotNone:self.input_ids[self.n_tokens:self.n_tokens+len(tokens)]=tokensdraft_tokens=self.draft_model(self.input_ids[:self.n_tokens+len(tokens)])tokens.extend(draft_tokens.astype(int)[:self._n_ctx-self.n_tokens-len(tokens)])defcreate_embedding(self,input:Union[str,List[str]],model:Optional[str]=None)->CreateEmbeddingResponse:"""Embed a string.        Args:            input: The utf-8 encoded string to embed.        Returns:            An embedding object.        """model_name:str=modelifmodelisnotNoneelseself.model_pathinput=inputifisinstance(input,list)else[input]# get numeric embeddingsembeds:Union[List[List[float]],List[List[List[float]]]]total_tokens:intembeds,total_tokens=self.embed(input,return_count=True)# type: ignore# convert to CreateEmbeddingResponsedata:List[Embedding]=[{"object":"embedding","embedding":emb,"index":idx,}foridx,embinenumerate(embeds)]return{"object":"list","data":data,"model":model_name,"usage":{"prompt_tokens":total_tokens,"total_tokens":total_tokens,},}defembed(self,input:Union[str,List[str]],normalize:bool=False,truncate:bool=True,return_count:bool=False,):"""Embed a string.        Args:            input: The utf-8 encoded string to embed.        Returns:            A list of embeddings        """n_embd=self.n_embd()n_batch=self.n_batch# get pooling informationpooling_type=self.pooling_type()logits_all=pooling_type==llama_cpp.LLAMA_POOLING_TYPE_NONEifself.context_params.embeddingsisFalse:raiseRuntimeError("Llama model must be created with embedding=True to call this method")ifself.verbose:llama_cpp.llama_perf_context_reset(self._ctx.ctx)ifisinstance(input,str):inputs=[input]else:inputs=input# reset batchself._batch.reset()# decode and fetch embeddingsdata:Union[List[List[float]],List[List[List[float]]]]=[]defdecode_batch(seq_sizes:List[int]):llama_cpp.llama_kv_self_clear(self._ctx.ctx)self._ctx.decode(self._batch)self._batch.reset()# store embeddingsifpooling_type==llama_cpp.LLAMA_POOLING_TYPE_NONE:pos:int=0fori,sizeinenumerate(seq_sizes):ptr=llama_cpp.llama_get_embeddings(self._ctx.ctx)embedding:List[List[float]]=[ptr[pos+j*n_embd:pos+(j+1)*n_embd]forjinrange(size)]ifnormalize:embedding=[internals.normalize_embedding(e)foreinembedding]data.append(embedding)pos+=sizeelse:foriinrange(len(seq_sizes)):ptr=llama_cpp.llama_get_embeddings_seq(self._ctx.ctx,i)embedding:List[float]=ptr[:n_embd]ifnormalize:embedding=internals.normalize_embedding(embedding)data.append(embedding)# init statetotal_tokens=0s_batch=[]t_batch=0p_batch=0# accumulate batches and encodefortextininputs:tokens=self.tokenize(text.encode("utf-8"))iftruncate:tokens=tokens[:n_batch]n_tokens=len(tokens)total_tokens+=n_tokens# check for overrunifn_tokens>n_batch:raiseValueError(f"Requested tokens ({n_tokens}) exceed batch size of{n_batch}")# time to eval batchift_batch+n_tokens>n_batch:decode_batch(s_batch)s_batch=[]t_batch=0p_batch=0# add to batchself._batch.add_sequence(tokens,p_batch,logits_all)# update batch statss_batch.append(n_tokens)t_batch+=n_tokensp_batch+=1# hanlde last batchdecode_batch(s_batch)ifself.verbose:llama_cpp.llama_perf_context_print(self._ctx.ctx)output=data[0]ifisinstance(input,str)elsedatallama_cpp.llama_kv_self_clear(self._ctx.ctx)self.reset()ifreturn_count:returnoutput,total_tokenselse:returnoutputdef_create_completion(self,prompt:Union[str,List[int]],suffix:Optional[str]=None,max_tokens:Optional[int]=16,temperature:float=0.8,top_p:float=0.95,min_p:float=0.05,typical_p:float=1.0,logprobs:Optional[int]=None,echo:bool=False,stop:Optional[Union[str,List[str]]]=[],frequency_penalty:float=0.0,presence_penalty:float=0.0,repeat_penalty:float=1.0,top_k:int=40,stream:bool=False,seed:Optional[int]=None,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_tau:float=5.0,mirostat_eta:float=0.1,model:Optional[str]=None,stopping_criteria:Optional[StoppingCriteriaList]=None,logits_processor:Optional[LogitsProcessorList]=None,grammar:Optional[LlamaGrammar]=None,logit_bias:Optional[Dict[int,float]]=None,)->Union[Iterator[CreateCompletionResponse],Iterator[CreateCompletionStreamResponse]]:assertsuffixisNoneorsuffix.__class__isstrcompletion_id:str=f"cmpl-{str(uuid.uuid4())}"created:int=int(time.time())bos_token_id:int=self.token_bos()cls_token_id:int=self._model.token_cls()sep_token_id:int=self._model.token_sep()prefix_token_id:int=0# self._model.token_prefix() # TODO: Fixmiddle_token_id:int=0# self._model.token_middle() # TODO: Fixsuffix_token_id:int=0# self._model.token_suffix() # TODO: Fixadd_space_prefix:bool=(self.metadata.get("tokenizer.ggml.add_space_prefix","true")=="true")bos_tokens:List[int]=[cls_token_idifcls_token_id!=-1elsebos_token_id]eos_tokens:List[int]=[sep_token_idifsep_token_id!=-1elseself.token_eos()]if((isinstance(prompt,list)andsuffixisNone)ornotself._model.add_bos_token()orbos_tokens[:1]==[-1]):bos_tokens=[]if(isinstance(prompt,list)andsuffixisNone)or(notself._model.add_eos_token()andsep_token_id==-1):eos_tokens=[]suffix_space_prefix:int=0# Tokenizer hack to remove leading spaceifadd_space_prefixandsuffix_token_id>=0andsuffix:suffix="☺"+suffixsuffix_space_prefix=2# If prompt is empty, initialize completion with BOS token to avoid# detokenization including a space at the beginning of the completioncompletion_tokens:List[int]=[]iflen(prompt)>0else[bos_token_id]# Add blank space to start of prompt to match OG llama tokenizerprefix_tokens:List[int]=([prefix_token_id]ifprefix_token_id>=0andsuffixisnotNoneelse[])+((self.tokenize(prompt.encode("utf-8"),add_bos=False,special=(prefix_token_id<0orsuffixisNone),)ifprompt!=""else[])ifisinstance(prompt,str)elseprompt)suffix_tokens:List[int]=(([suffix_token_id]+(self.tokenize(suffix.encode("utf-8"),add_bos=False,special=False)[suffix_space_prefix:]ifsuffixelse[]))ifsuffix_token_id>=0andsuffixisnotNoneelse[])middle_tokens:List[int]=([middle_token_id]ifmiddle_token_id>=0andsuffixisnotNoneelse[])prompt_tokens:List[int]=(bos_tokens+((suffix_tokens+prefix_tokens+middle_tokens)ifself.spm_infillelse(prefix_tokens+suffix_tokens+middle_tokens))+eos_tokens)text:bytes=b""returned_tokens:int=0stop=(stopifisinstance(stop,list)else[stop]ifisinstance(stop,str)else[])model_name:str=modelifmodelisnotNoneelseself.model_pathifprompt_tokens[:2]==[self.token_bos()]*2:warnings.warn(f'Detected duplicate leading "{self._model.token_get_text(self.token_bos())}" in prompt, this will likely reduce response quality, consider removing it...',RuntimeWarning,)# NOTE: This likely doesn't work correctly for the first token in the prompt# because of the extra space added to the start of the prompt_tokensiflogit_biasisnotNone:logit_bias_map={int(k):float(v)fork,vinlogit_bias.items()}deflogit_bias_processor(input_ids:npt.NDArray[np.intc],scores:npt.NDArray[np.single],)->npt.NDArray[np.single]:new_scores=np.copy(scores)# Does it make sense to copy the whole array or can we just overwrite the original one?forinput_id,scoreinlogit_bias_map.items():new_scores[input_id]=score+scores[input_id]returnnew_scores_logit_bias_processor=LogitsProcessorList([logit_bias_processor])iflogits_processorisNone:logits_processor=_logit_bias_processorelse:logits_processor=logits_processor.extend(_logit_bias_processor)ifself.verbose:self._ctx.reset_timings()iflen(prompt_tokens)>=self._n_ctx:raiseValueError(f"Requested tokens ({len(prompt_tokens)}) exceed context window of{llama_cpp.llama_n_ctx(self.ctx)}")ifmax_tokensisNoneormax_tokens<=0:# Unlimited, depending on n_ctx.max_tokens=self._n_ctx-len(prompt_tokens)# Truncate max_tokens if requested tokens would exceed the context windowmax_tokens=(max_tokensifmax_tokens+len(prompt_tokens)<self._n_ctxelse(self._n_ctx-len(prompt_tokens)))ifstop!=[]:stop_sequences=[s.encode("utf-8")forsinstop]else:stop_sequences=[]iflogprobsisnotNoneandself._logits_allisFalse:raiseValueError("logprobs is not supported for models created with logits_all=False")ifself.cache:try:cache_item=self.cache[prompt_tokens]cache_prefix_len=Llama.longest_token_prefix(cache_item.input_ids.tolist(),prompt_tokens)eval_prefix_len=Llama.longest_token_prefix(self._input_ids.tolist(),prompt_tokens)ifcache_prefix_len>eval_prefix_len:self.load_state(cache_item)ifself.verbose:print("Llama._create_completion: cache hit",file=sys.stderr)exceptKeyError:ifself.verbose:print("Llama._create_completion: cache miss",file=sys.stderr)ifseedisnotNone:self.set_seed(seed)else:self.set_seed(random.Random(self._seed).randint(0,2**32))finish_reason="length"multibyte_fix=0fortokeninself.generate(prompt_tokens,top_k=top_k,top_p=top_p,min_p=min_p,typical_p=typical_p,temp=temperature,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,repeat_penalty=repeat_penalty,stopping_criteria=stopping_criteria,logits_processor=logits_processor,grammar=grammar,):ifllama_cpp.llama_token_is_eog(self._model.vocab,token):text=self.detokenize(completion_tokens,prev_tokens=prompt_tokens)finish_reason="stop"breakcompletion_tokens.append(token)all_text=self.detokenize(completion_tokens,prev_tokens=prompt_tokens)# Contains multi-byte UTF8fork,charinenumerate(all_text[-3:]):k=3-kfornum,patternin[(2,192),(3,224),(4,240)]:# Bitwise AND checkifnum>kandpattern&char==pattern:multibyte_fix=num-k# Stop incomplete bytes from passingifmultibyte_fix>0:multibyte_fix-=1continueany_stop=[sforsinstop_sequencesifsinall_text]iflen(any_stop)>0:first_stop=any_stop[0]text=all_text[:all_text.index(first_stop)]finish_reason="stop"breakifstream:remaining_tokens=completion_tokens[returned_tokens:]remaining_text=self.detokenize(remaining_tokens,prev_tokens=prompt_tokens+completion_tokens[:returned_tokens],)remaining_length=len(remaining_text)# We want to avoid yielding any characters from# the generated text if they are part of a stop# sequence.first_stop_position=0forsinstop_sequences:foriinrange(min(len(s),remaining_length),0,-1):ifremaining_text.endswith(s[:i]):ifi>first_stop_position:first_stop_position=ibreaktoken_end_position=0iflogprobsisnotNone:# not sure how to handle this branch when dealing# with CJK output, so keep it unchangedfortokeninremaining_tokens:iftoken==bos_token_id:continuetoken_end_position+=len(self.detokenize([token],prev_tokens=prompt_tokens+completion_tokens[:returned_tokens],))# Check if stop sequence is in the tokeniftoken_end_position>(remaining_length-first_stop_position):breaktoken_str=self.detokenize([token],prev_tokens=prompt_tokens+completion_tokens[:returned_tokens],).decode("utf-8",errors="ignore")text_offset=len(prompt)+len(self.detokenize(completion_tokens[:returned_tokens],prev_tokens=prompt_tokens+completion_tokens[:returned_tokens],).decode("utf-8",errors="ignore"))token_offset=len(prompt_tokens)+returned_tokenslogits=self._scores[token_offset-1,:]current_logprobs=Llama.logits_to_logprobs(logits).tolist()sorted_logprobs=list(sorted(zip(current_logprobs,range(len(current_logprobs))),reverse=True,))top_logprob={self.detokenize([i]).decode("utf-8",errors="ignore"):logprobforlogprob,iinsorted_logprobs[:logprobs]}top_logprob.update({token_str:current_logprobs[int(token)]})logprobs_or_none={"tokens":[self.detokenize([token],prev_tokens=prompt_tokens+completion_tokens[:returned_tokens],).decode("utf-8",errors="ignore")],"text_offset":[text_offset],"token_logprobs":[current_logprobs[int(token)]],"top_logprobs":[top_logprob],}returned_tokens+=1yield{"id":completion_id,"object":"text_completion","created":created,"model":model_name,"choices":[{"text":self.detokenize([token],prev_tokens=prompt_tokens+completion_tokens[:returned_tokens],).decode("utf-8",errors="ignore"),"index":0,"logprobs":logprobs_or_none,"finish_reason":None,}],}else:whilelen(remaining_tokens)>0:decode_success=Falseforiinrange(1,len(remaining_tokens)+1):try:bs=self.detokenize(remaining_tokens[:i],prev_tokens=prompt_tokens+completion_tokens[:returned_tokens],)ts=bs.decode("utf-8")decode_success=TruebreakexceptUnicodeError:passelse:breakifnotdecode_success:# all remaining tokens cannot be decoded to a UTF-8 characterbreaktoken_end_position+=len(bs)iftoken_end_position>(remaining_length-first_stop_position):breakremaining_tokens=remaining_tokens[i:]returned_tokens+=iyield{"id":completion_id,"object":"text_completion","created":created,"model":model_name,"choices":[{"text":ts,"index":0,"logprobs":None,"finish_reason":None,}],}iflen(completion_tokens)>=max_tokens:text=self.detokenize(completion_tokens,prev_tokens=prompt_tokens)finish_reason="length"breakifstopping_criteriaisnotNoneandstopping_criteria(self._input_ids,self._scores[-1,:]):text=self.detokenize(completion_tokens,prev_tokens=prompt_tokens)finish_reason="stop"ifself.verbose:self._ctx.print_timings()ifstream:remaining_tokens=completion_tokens[returned_tokens:]remaining_text=self.detokenize(remaining_tokens,prev_tokens=prompt_tokens+completion_tokens[:returned_tokens],)any_stop=[sforsinstop_sequencesifsinremaining_text]iflen(any_stop)>0:end=min(remaining_text.index(stop)forstopinany_stop)else:end=len(remaining_text)token_end_position=0fortokeninremaining_tokens:token_end_position+=len(self.detokenize([token],prev_tokens=prompt_tokens+completion_tokens[:returned_tokens],))logprobs_or_none:Optional[CompletionLogprobs]=NoneiflogprobsisnotNone:iftoken==bos_token_id:continuetoken_str=self.detokenize([token]).decode("utf-8",errors="ignore")text_offset=len(prompt)+len(self.detokenize(completion_tokens[:returned_tokens],prev_tokens=prompt_tokens+completion_tokens[:returned_tokens],))token_offset=len(prompt_tokens)+returned_tokens-1logits=self._scores[token_offset,:]current_logprobs=Llama.logits_to_logprobs(logits).tolist()sorted_logprobs=list(sorted(zip(current_logprobs,range(len(current_logprobs))),reverse=True,))top_logprob={self.detokenize([i]).decode("utf-8",errors="ignore"):logprobforlogprob,iinsorted_logprobs[:logprobs]}top_logprob.update({token_str:current_logprobs[int(token)]})logprobs_or_none={"tokens":[self.detokenize([token]).decode("utf-8",errors="ignore")],"text_offset":[text_offset],"token_logprobs":[current_logprobs[int(token)]],"top_logprobs":[top_logprob],}iftoken_end_position>=end:last_text=self.detokenize([token])iftoken_end_position==end-1:breakreturned_tokens+=1yield{"id":completion_id,"object":"text_completion","created":created,"model":model_name,"choices":[{"text":last_text[:len(last_text)-(token_end_position-end)].decode("utf-8",errors="ignore"),"index":0,"logprobs":logprobs_or_none,"finish_reason":None,}],}breakreturned_tokens+=1yield{"id":completion_id,"object":"text_completion","created":created,"model":model_name,"choices":[{"text":self.detokenize([token]).decode("utf-8",errors="ignore"),"index":0,"logprobs":logprobs_or_none,"finish_reason":None,}],}yield{"id":completion_id,"object":"text_completion","created":created,"model":model_name,"choices":[{"text":"","index":0,"logprobs":None,"finish_reason":finish_reason,}],}ifself.cache:ifself.verbose:print("Llama._create_completion: cache save",file=sys.stderr)self.cache[prompt_tokens+completion_tokens]=self.save_state()ifself.verbose:print("Llama._create_completion: cache saved",file=sys.stderr)returnifself.cache:ifself.verbose:print("Llama._create_completion: cache save",file=sys.stderr)self.cache[prompt_tokens+completion_tokens]=self.save_state()text_str=text.decode("utf-8",errors="ignore")ifecho:text_str=prompt+text_strifsuffix_token_id<0andsuffixisnotNone:text_str=text_str+suffixlogprobs_or_none:Optional[CompletionLogprobs]=NoneiflogprobsisnotNone:text_offset=0ifechoelselen(prompt)token_offset=0ifechoelselen(prompt_tokens[1:])text_offsets:List[int]=[]token_logprobs:List[Optional[float]]=[]tokens:List[str]=[]top_logprobs:List[Optional[Dict[str,float]]]=[]ifecho:# Remove leading BOS token if existsall_tokens=(prompt_tokens[1ifprompt_tokens[0]==self.token_bos()else0:]+completion_tokens)else:all_tokens=completion_tokensall_token_strs=[self.detokenize([token],prev_tokens=all_tokens[:i]).decode("utf-8",errors="ignore")fori,tokeninenumerate(all_tokens)]all_logprobs=Llama.logits_to_logprobs(self._scores)[token_offset:]# TODO: may be able to change this loop to use np.take_along_dimforidx,(token,token_str,logprobs_token)inenumerate(zip(all_tokens,all_token_strs,all_logprobs)):iftoken==bos_token_id:continuetext_offsets.append(text_offset+len(self.detokenize(all_tokens[:idx]).decode("utf-8",errors="ignore")))tokens.append(token_str)sorted_logprobs=list(sorted(zip(logprobs_token,range(len(logprobs_token))),reverse=True))token_logprobs.append(logprobs_token[int(token)])top_logprob:Optional[Dict[str,float]]={self.detokenize([i],prev_tokens=all_tokens[:idx]).decode("utf-8",errors="ignore"):logprobforlogprob,iinsorted_logprobs[:logprobs]}top_logprob.update({token_str:logprobs_token[int(token)]})top_logprobs.append(top_logprob)# Weird idosincracy of the OpenAI API where# token_logprobs and top_logprobs are null for# the first token.ifechoandlen(all_tokens)>0:token_logprobs[0]=Nonetop_logprobs[0]=Nonelogprobs_or_none={"tokens":tokens,"text_offset":text_offsets,"token_logprobs":token_logprobs,"top_logprobs":top_logprobs,}yield{"id":completion_id,"object":"text_completion","created":created,"model":model_name,"choices":[{"text":text_str,"index":0,"logprobs":logprobs_or_none,"finish_reason":finish_reason,}],"usage":{"prompt_tokens":len(prompt_tokens),"completion_tokens":len(completion_tokens),"total_tokens":len(prompt_tokens)+len(completion_tokens),},}defcreate_completion(self,prompt:Union[str,List[int]],suffix:Optional[str]=None,max_tokens:Optional[int]=16,temperature:float=0.8,top_p:float=0.95,min_p:float=0.05,typical_p:float=1.0,logprobs:Optional[int]=None,echo:bool=False,stop:Optional[Union[str,List[str]]]=[],frequency_penalty:float=0.0,presence_penalty:float=0.0,repeat_penalty:float=1.0,top_k:int=40,stream:bool=False,seed:Optional[int]=None,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_tau:float=5.0,mirostat_eta:float=0.1,model:Optional[str]=None,stopping_criteria:Optional[StoppingCriteriaList]=None,logits_processor:Optional[LogitsProcessorList]=None,grammar:Optional[LlamaGrammar]=None,logit_bias:Optional[Dict[int,float]]=None,)->Union[CreateCompletionResponse,Iterator[CreateCompletionStreamResponse]]:"""Generate text from a prompt.        Args:            prompt: The prompt to generate text from.            suffix: A suffix to append to the generated text. If None, no suffix is appended.            max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.            temperature: The temperature to use for sampling.            top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751            min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841            typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.            logprobs: The number of logprobs to return. If None, no logprobs are returned.            echo: Whether to echo the prompt.            stop: A list of strings to stop generation when encountered.            frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.            presence_penalty: The penalty to apply to tokens based on their presence in the prompt.            repeat_penalty: The penalty to apply to repeated tokens.            top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751            stream: Whether to stream the results.            seed: The seed to use for sampling.            tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.            mirostat_mode: The mirostat sampling mode.            mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.            mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.            model: The name to use for the model in the completion object.            stopping_criteria: A list of stopping criteria to use.            logits_processor: A list of logits processors to use.            grammar: A grammar to use for constrained sampling.            logit_bias: A logit bias to use.        Raises:            ValueError: If the requested tokens exceed the context window.            RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.        Returns:            Response object containing the generated text.        """completion_or_chunks=self._create_completion(prompt=prompt,suffix=suffix,max_tokens=-1ifmax_tokensisNoneelsemax_tokens,temperature=temperature,top_p=top_p,min_p=min_p,typical_p=typical_p,logprobs=logprobs,echo=echo,stop=stop,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,repeat_penalty=repeat_penalty,top_k=top_k,stream=stream,seed=seed,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,model=model,stopping_criteria=stopping_criteria,logits_processor=logits_processor,grammar=grammar,logit_bias=logit_bias,)ifstream:chunks:Iterator[CreateCompletionStreamResponse]=completion_or_chunksreturnchunkscompletion:Completion=next(completion_or_chunks)# type: ignorereturncompletiondef__call__(self,prompt:str,suffix:Optional[str]=None,max_tokens:Optional[int]=16,temperature:float=0.8,top_p:float=0.95,min_p:float=0.05,typical_p:float=1.0,logprobs:Optional[int]=None,echo:bool=False,stop:Optional[Union[str,List[str]]]=[],frequency_penalty:float=0.0,presence_penalty:float=0.0,repeat_penalty:float=1.0,top_k:int=40,stream:bool=False,seed:Optional[int]=None,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_tau:float=5.0,mirostat_eta:float=0.1,model:Optional[str]=None,stopping_criteria:Optional[StoppingCriteriaList]=None,logits_processor:Optional[LogitsProcessorList]=None,grammar:Optional[LlamaGrammar]=None,logit_bias:Optional[Dict[int,float]]=None,)->Union[CreateCompletionResponse,Iterator[CreateCompletionStreamResponse]]:"""Generate text from a prompt.        Args:            prompt: The prompt to generate text from.            suffix: A suffix to append to the generated text. If None, no suffix is appended.            max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.            temperature: The temperature to use for sampling.            top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751            min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841            typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.            logprobs: The number of logprobs to return. If None, no logprobs are returned.            echo: Whether to echo the prompt.            stop: A list of strings to stop generation when encountered.            frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.            presence_penalty: The penalty to apply to tokens based on their presence in the prompt.            repeat_penalty: The penalty to apply to repeated tokens.            top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751            stream: Whether to stream the results.            seed: The seed to use for sampling.            tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.            mirostat_mode: The mirostat sampling mode.            mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.            mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.            model: The name to use for the model in the completion object.            stopping_criteria: A list of stopping criteria to use.            logits_processor: A list of logits processors to use.            grammar: A grammar to use for constrained sampling.            logit_bias: A logit bias to use.        Raises:            ValueError: If the requested tokens exceed the context window.            RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.        Returns:            Response object containing the generated text.        """returnself.create_completion(prompt=prompt,suffix=suffix,max_tokens=max_tokens,temperature=temperature,top_p=top_p,min_p=min_p,typical_p=typical_p,logprobs=logprobs,echo=echo,stop=stop,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,repeat_penalty=repeat_penalty,top_k=top_k,stream=stream,seed=seed,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,model=model,stopping_criteria=stopping_criteria,logits_processor=logits_processor,grammar=grammar,logit_bias=logit_bias,)defcreate_chat_completion(self,messages:List[ChatCompletionRequestMessage],functions:Optional[List[ChatCompletionFunction]]=None,function_call:Optional[ChatCompletionRequestFunctionCall]=None,tools:Optional[List[ChatCompletionTool]]=None,tool_choice:Optional[ChatCompletionToolChoiceOption]=None,temperature:float=0.2,top_p:float=0.95,top_k:int=40,min_p:float=0.05,typical_p:float=1.0,stream:bool=False,stop:Optional[Union[str,List[str]]]=[],seed:Optional[int]=None,response_format:Optional[ChatCompletionRequestResponseFormat]=None,max_tokens:Optional[int]=None,presence_penalty:float=0.0,frequency_penalty:float=0.0,repeat_penalty:float=1.0,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_tau:float=5.0,mirostat_eta:float=0.1,model:Optional[str]=None,logits_processor:Optional[LogitsProcessorList]=None,grammar:Optional[LlamaGrammar]=None,logit_bias:Optional[Dict[int,float]]=None,logprobs:Optional[bool]=None,top_logprobs:Optional[int]=None,)->Union[CreateChatCompletionResponse,Iterator[CreateChatCompletionStreamResponse]]:"""Generate a chat completion from a list of messages.        Args:            messages: A list of messages to generate a response for.            functions: A list of functions to use for the chat completion.            function_call: A function call to use for the chat completion.            tools: A list of tools to use for the chat completion.            tool_choice: A tool choice to use for the chat completion.            temperature: The temperature to use for sampling.            top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751            top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751            min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841            typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.            stream: Whether to stream the results.            stop: A list of strings to stop generation when encountered.            seed: The seed to use for sampling.            response_format: The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json.            max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.            presence_penalty: The penalty to apply to tokens based on their presence in the prompt.            frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.            repeat_penalty: The penalty to apply to repeated tokens.            tfs_z: The tail-free sampling parameter.            mirostat_mode: The mirostat sampling mode.            mirostat_tau: The mirostat sampling tau parameter.            mirostat_eta: The mirostat sampling eta parameter.            model: The name to use for the model in the completion object.            logits_processor: A list of logits processors to use.            grammar: A grammar to use.            logit_bias: A logit bias to use.        Returns:            Generated chat completion or a stream of chat completion chunks.        """handler=(self.chat_handlerorself._chat_handlers.get(self.chat_format)orllama_chat_format.get_chat_completion_handler(self.chat_format))returnhandler(llama=self,messages=messages,functions=functions,function_call=function_call,tools=tools,tool_choice=tool_choice,temperature=temperature,top_p=top_p,top_k=top_k,min_p=min_p,typical_p=typical_p,logprobs=logprobs,top_logprobs=top_logprobs,stream=stream,stop=stop,seed=seed,response_format=response_format,max_tokens=max_tokens,presence_penalty=presence_penalty,frequency_penalty=frequency_penalty,repeat_penalty=repeat_penalty,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,model=model,logits_processor=logits_processor,grammar=grammar,logit_bias=logit_bias,)defcreate_chat_completion_openai_v1(self,*args:Any,**kwargs:Any,):"""Generate a chat completion with return type based on the the OpenAI v1 API.        OpenAI python package is required to use this method.        You can install it with `pip install openai`.        Args:            *args: Positional arguments to pass to create_chat_completion.            **kwargs: Keyword arguments to pass to create_chat_completion.        Returns:            Generated chat completion or a stream of chat completion chunks.        """try:fromopenai.types.chatimportChatCompletion,ChatCompletionChunkstream=kwargs.get("stream",False)# type: ignoreassertisinstance(stream,bool)ifstream:return(ChatCompletionChunk(**chunk)forchunkinself.create_chat_completion(*args,**kwargs))# type: ignoreelse:returnChatCompletion(**self.create_chat_completion(*args,**kwargs))# type: ignoreexceptImportError:raiseImportError("To use create_chat_completion_openai_v1, you must install the openai package.""You can install it with `pip install openai`.")def__getstate__(self):returndict(model_path=self.model_path,# Model Paramsn_gpu_layers=self.model_params.n_gpu_layers,split_mode=self.model_params.split_mode,main_gpu=self.model_params.main_gpu,tensor_split=self.tensor_split,vocab_only=self.model_params.vocab_only,use_mmap=self.model_params.use_mmap,use_mlock=self.model_params.use_mlock,kv_overrides=self.kv_overrides,# Context Paramsseed=self._seed,n_ctx=self.context_params.n_ctx,n_batch=self.n_batch,n_ubatch=self.context_params.n_ubatch,n_threads=self.context_params.n_threads,n_threads_batch=self.context_params.n_threads_batch,rope_scaling_type=self.context_params.rope_scaling_type,pooling_type=self.context_params.pooling_type,rope_freq_base=self.context_params.rope_freq_base,rope_freq_scale=self.context_params.rope_freq_scale,yarn_ext_factor=self.context_params.yarn_ext_factor,yarn_attn_factor=self.context_params.yarn_attn_factor,yarn_beta_fast=self.context_params.yarn_beta_fast,yarn_beta_slow=self.context_params.yarn_beta_slow,yarn_orig_ctx=self.context_params.yarn_orig_ctx,logits_all=self._logits_all,embedding=self.context_params.embeddings,offload_kqv=self.context_params.offload_kqv,flash_attn=self.context_params.flash_attn,op_offloat=self.context_params.op_offloat,swa_full=self.context_params.swa_full,# Sampling Paramsno_perf=self.context_params.no_perf,last_n_tokens_size=self.last_n_tokens_size,# LoRA Paramslora_base=self.lora_base,lora_scale=self.lora_scale,lora_path=self.lora_path,# Backend Paramsnuma=self.numa,# Chat Format Paramschat_format=self.chat_format,chat_handler=self.chat_handler,# Speculative Decidngdraft_model=self.draft_model,# KV cache quantizationtype_k=self.context_params.type_k,type_v=self.context_params.type_v,# Miscspm_infill=self.spm_infill,verbose=self.verbose,)def__setstate__(self,state):self.__init__(**state)defsave_state(self)->LlamaState:ifself.verbose:print("Llama.save_state: saving llama state",file=sys.stderr)state_size=llama_cpp.llama_get_state_size(self._ctx.ctx)ifself.verbose:print(f"Llama.save_state: got state size:{state_size}",file=sys.stderr)llama_state=(ctypes.c_uint8*int(state_size))()ifself.verbose:print("Llama.save_state: allocated state",file=sys.stderr)n_bytes=llama_cpp.llama_copy_state_data(self._ctx.ctx,llama_state)ifself.verbose:print(f"Llama.save_state: copied llama state:{n_bytes}",file=sys.stderr)ifint(n_bytes)>int(state_size):raiseRuntimeError("Failed to copy llama state data")llama_state_compact=(ctypes.c_uint8*int(n_bytes))()llama_cpp.ctypes.memmove(llama_state_compact,llama_state,int(n_bytes))ifself.verbose:print(f"Llama.save_state: saving{n_bytes} bytes of llama state",file=sys.stderr,)returnLlamaState(scores=self._scores.copy(),input_ids=self.input_ids.copy(),n_tokens=self.n_tokens,llama_state=bytes(llama_state_compact),llama_state_size=n_bytes,seed=self._seed,)defload_state(self,state:LlamaState)->None:# Only filling in up to `n_tokens` and then zero-ing out the restself.scores[:state.n_tokens,:]=state.scores.copy()rest=self.scores[state.n_tokens:,:]rest[rest>0]=0.0self.input_ids=state.input_ids.copy()self.n_tokens=state.n_tokensself._seed=state.seedstate_size=state.llama_state_sizeLLamaStateArrayType=ctypes.c_uint8*state_sizellama_state=LLamaStateArrayType.from_buffer_copy(state.llama_state)ifllama_cpp.llama_set_state_data(self._ctx.ctx,llama_state)!=state_size:raiseRuntimeError("Failed to set llama state data")defn_ctx(self)->int:"""Return the context window size."""returnself._ctx.n_ctx()defn_embd(self)->int:"""Return the embedding size."""returnself._model.n_embd()defn_vocab(self)->int:"""Return the vocabulary size."""returnself._model.n_vocab()deftokenizer(self)->LlamaTokenizer:"""Return the llama tokenizer for this model."""returnLlamaTokenizer(self)deftoken_eos(self)->int:"""Return the end-of-sequence token."""returnself._model.token_eos()deftoken_bos(self)->int:"""Return the beginning-of-sequence token."""returnself._model.token_bos()deftoken_nl(self)->int:"""Return the newline token."""returnself._model.token_nl()defpooling_type(self)->str:"""Return the pooling type."""returnself._ctx.pooling_type()defclose(self)->None:"""Explicitly free the model from memory."""self._stack.close()def__del__(self)->None:self.close()@staticmethoddeflogits_to_logprobs(logits:Union[npt.NDArray[np.single],List],axis:int=-1)->npt.NDArray[np.single]:# https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.log_softmax.htmllogits_maxs:np.ndarray=np.amax(logits,axis=axis,keepdims=True)iflogits_maxs.ndim>0:logits_maxs[~np.isfinite(logits_maxs)]=0elifnotnp.isfinite(logits_maxs):logits_maxs=0subtract_maxs=np.subtract(logits,logits_maxs,dtype=np.single)exp=np.exp(subtract_maxs)# Suppress warnings about log of zerowithnp.errstate(divide="ignore"):summed=np.sum(exp,axis=axis,keepdims=True)out=np.log(summed)returnsubtract_maxs-out@staticmethoddeflongest_token_prefix(a:Sequence[int],b:Sequence[int]):longest_prefix=0for_a,_binzip(a,b):if_a==_b:longest_prefix+=1else:breakreturnlongest_prefix@classmethoddeffrom_pretrained(cls,repo_id:str,filename:Optional[str],additional_files:Optional[List]=None,local_dir:Optional[Union[str,os.PathLike[str]]]=None,local_dir_use_symlinks:Union[bool,Literal["auto"]]="auto",cache_dir:Optional[Union[str,os.PathLike[str]]]=None,**kwargs:Any,)->"Llama":"""Create a Llama model from a pretrained model name or path.        This method requires the huggingface-hub package.        You can install it with `pip install huggingface-hub`.        Args:            repo_id: The model repo id.            filename: A filename or glob pattern to match the model file in the repo.            additional_files: A list of filenames or glob patterns to match additional model files in the repo.            local_dir: The local directory to save the model to.            local_dir_use_symlinks: Whether to use symlinks when downloading the model.            **kwargs: Additional keyword arguments to pass to the Llama constructor.        Returns:            A Llama model."""try:fromhuggingface_hubimporthf_hub_download,HfFileSystemfromhuggingface_hub.utilsimportvalidate_repo_idexceptImportError:raiseImportError("Llama.from_pretrained requires the huggingface-hub package. ""You can install it with `pip install huggingface-hub`.")validate_repo_id(repo_id)hffs=HfFileSystem()files=[file["name"]ifisinstance(file,dict)elsefileforfileinhffs.ls(repo_id,recursive=True)]# split each file into repo_id, subfolder, filenamefile_list:List[str]=[]forfileinfiles:rel_path=Path(file).relative_to(repo_id)file_list.append(str(rel_path))# find the only/first shard file:matching_files=[fileforfileinfile_listiffnmatch.fnmatch(file,filename)]# type: ignoreiflen(matching_files)==0:raiseValueError(f"No file found in{repo_id} that match{filename}\n\n"f"Available Files:\n{json.dumps(file_list)}")iflen(matching_files)>1:raiseValueError(f"Multiple files found in{repo_id} matching{filename}\n\n"f"Available Files:\n{json.dumps(files)}")(matching_file,)=matching_filessubfolder=str(Path(matching_file).parent)filename=Path(matching_file).name# download the filehf_hub_download(repo_id=repo_id,filename=filename,subfolder=subfolder,local_dir=local_dir,local_dir_use_symlinks=local_dir_use_symlinks,cache_dir=cache_dir,)ifadditional_files:foradditonal_file_nameinadditional_files:# find the additional shard file:matching_additional_files=[fileforfileinfile_listiffnmatch.fnmatch(file,additonal_file_name)]iflen(matching_additional_files)==0:raiseValueError(f"No file found in{repo_id} that match{additonal_file_name}\n\n"f"Available Files:\n{json.dumps(file_list)}")iflen(matching_additional_files)>1:raiseValueError(f"Multiple files found in{repo_id} matching{additonal_file_name}\n\n"f"Available Files:\n{json.dumps(files)}")(matching_additional_file,)=matching_additional_files# download the additional filehf_hub_download(repo_id=repo_id,filename=matching_additional_file,subfolder=subfolder,local_dir=local_dir,local_dir_use_symlinks=local_dir_use_symlinks,cache_dir=cache_dir,)iflocal_dirisNone:model_path=hf_hub_download(repo_id=repo_id,filename=filename,subfolder=subfolder,local_dir=local_dir,local_dir_use_symlinks=local_dir_use_symlinks,cache_dir=cache_dir,local_files_only=True,)else:model_path=os.path.join(local_dir,filename)# loading the first file of a sharded GGUF loads all remaining shard files in the subfolderreturncls(model_path=model_path,**kwargs,)

__init__(model_path,*,n_gpu_layers=0,split_mode=llama_cpp.LLAMA_SPLIT_MODE_LAYER,main_gpu=0,tensor_split=None,vocab_only=False,use_mmap=True,use_mlock=False,kv_overrides=None,seed=llama_cpp.LLAMA_DEFAULT_SEED,n_ctx=512,n_batch=512,n_ubatch=512,n_threads=None,n_threads_batch=None,rope_scaling_type=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,pooling_type=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,rope_freq_base=0.0,rope_freq_scale=0.0,yarn_ext_factor=-1.0,yarn_attn_factor=1.0,yarn_beta_fast=32.0,yarn_beta_slow=1.0,yarn_orig_ctx=0,logits_all=False,embedding=False,offload_kqv=True,flash_attn=False,op_offloat=None,swa_full=None,no_perf=False,last_n_tokens_size=64,lora_base=None,lora_scale=1.0,lora_path=None,numa=False,chat_format=None,chat_handler=None,draft_model=None,tokenizer=None,type_k=None,type_v=None,spm_infill=False,verbose=True,**kwargs)

Load a llama.cpp model frommodel_path.

Examples:

Basic usage

>>>importllama_cpp>>>model=llama_cpp.Llama(...model_path="path/to/model",...)>>>print(model("The quick brown fox jumps ",stop=["."])["choices"][0]["text"])the lazy dog

Loading a chat model

>>>importllama_cpp>>>model=llama_cpp.Llama(...model_path="path/to/model",...chat_format="llama-2",...)>>>print(model.create_chat_completion(...messages=[{..."role":"user",..."content":"what is the meaning of life?"...}]...))

Parameters:

  • model_path (str) –

    Path to the model.

  • n_gpu_layers (int, default:0) –

    Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.

  • split_mode (int, default:LLAMA_SPLIT_MODE_LAYER) –

    How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options.

  • main_gpu (int, default:0) –

    main_gpu interpretation depends on split_mode: LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_MODE_LAYER: ignored

  • tensor_split (Optional[List[float]], default:None) –

    How split tensors should be distributed across GPUs. If None, the model is not split.

  • vocab_only (bool, default:False) –

    Only load the vocabulary no weights.

  • use_mmap (bool, default:True) –

    Use mmap if possible.

  • use_mlock (bool, default:False) –

    Force the system to keep the model in RAM.

  • kv_overrides (Optional[Dict[str,Union[bool,int,float,str]]], default:None) –

    Key-value overrides for the model.

  • seed (int, default:LLAMA_DEFAULT_SEED) –

    RNG seed, -1 for random

  • n_ctx (int, default:512) –

    Text context, 0 = from model

  • n_batch (int, default:512) –

    Prompt processing maximum batch size

  • n_ubatch (int, default:512) –

    Physical batch size

  • n_threads (Optional[int], default:None) –

    Number of threads to use for generation

  • n_threads_batch (Optional[int], default:None) –

    Number of threads to use for batch processing

  • rope_scaling_type (Optional[int], default:LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) –

    RoPE scaling type, fromenum llama_rope_scaling_type. ref:https://github.com/ggerganov/llama.cpp/pull/2054

  • pooling_type (int, default:LLAMA_POOLING_TYPE_UNSPECIFIED) –

    Pooling type, fromenum llama_pooling_type.

  • rope_freq_base (float, default:0.0) –

    RoPE base frequency, 0 = from model

  • rope_freq_scale (float, default:0.0) –

    RoPE frequency scaling factor, 0 = from model

  • yarn_ext_factor (float, default:-1.0) –

    YaRN extrapolation mix factor, negative = from model

  • yarn_attn_factor (float, default:1.0) –

    YaRN magnitude scaling factor

  • yarn_beta_fast (float, default:32.0) –

    YaRN low correction dim

  • yarn_beta_slow (float, default:1.0) –

    YaRN high correction dim

  • yarn_orig_ctx (int, default:0) –

    YaRN original context size

  • logits_all (bool, default:False) –

    Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.

  • embedding (bool, default:False) –

    Embedding mode only.

  • offload_kqv (bool, default:True) –

    Offload K, Q, V to GPU.

  • flash_attn (bool, default:False) –

    Use flash attention.

  • op_offloat (Optional[bool], default:None) –

    offload host tensor operations to device

  • swa_full (Optional[bool], default:None) –
  • no_perf (bool, default:False) –

    Measure performance timings.

  • last_n_tokens_size (int, default:64) –

    Maximum number of tokens to keep in the last_n_tokens deque.

  • lora_base (Optional[str], default:None) –

    Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.

  • lora_path (Optional[str], default:None) –

    Path to a LoRA file to apply to the model.

  • numa (Union[bool,int], default:False) –

    numa policy

  • chat_format (Optional[str], default:None) –

    String specifying the chat format to use when calling create_chat_completion.

  • chat_handler (Optional[LlamaChatCompletionHandler], default:None) –

    Optional chat handler to use when calling create_chat_completion.

  • draft_model (Optional[LlamaDraftModel], default:None) –

    Optional draft model to use for speculative decoding.

  • tokenizer (Optional[BaseLlamaTokenizer], default:None) –

    Optional tokenizer to override the default tokenizer from llama.cpp.

  • verbose (bool, default:True) –

    Print verbose output to stderr.

  • type_k (Optional[int], default:None) –

    KV cache data type for K (default: f16)

  • type_v (Optional[int], default:None) –

    KV cache data type for V (default: f16)

  • spm_infill (bool, default:False) –

    Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.

Raises:

Returns:

  • A Llama instance.

Source code inllama_cpp/llama.py
 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547
def__init__(self,model_path:str,*,# Model Paramsn_gpu_layers:int=0,split_mode:int=llama_cpp.LLAMA_SPLIT_MODE_LAYER,main_gpu:int=0,tensor_split:Optional[List[float]]=None,vocab_only:bool=False,use_mmap:bool=True,use_mlock:bool=False,kv_overrides:Optional[Dict[str,Union[bool,int,float,str]]]=None,# Context Paramsseed:int=llama_cpp.LLAMA_DEFAULT_SEED,n_ctx:int=512,n_batch:int=512,n_ubatch:int=512,n_threads:Optional[int]=None,n_threads_batch:Optional[int]=None,rope_scaling_type:Optional[int]=llama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,pooling_type:int=llama_cpp.LLAMA_POOLING_TYPE_UNSPECIFIED,rope_freq_base:float=0.0,rope_freq_scale:float=0.0,yarn_ext_factor:float=-1.0,yarn_attn_factor:float=1.0,yarn_beta_fast:float=32.0,yarn_beta_slow:float=1.0,yarn_orig_ctx:int=0,logits_all:bool=False,embedding:bool=False,offload_kqv:bool=True,flash_attn:bool=False,op_offloat:Optional[bool]=None,swa_full:Optional[bool]=None,# Sampling Paramsno_perf:bool=False,last_n_tokens_size:int=64,# LoRA Paramslora_base:Optional[str]=None,lora_scale:float=1.0,lora_path:Optional[str]=None,# Backend Paramsnuma:Union[bool,int]=False,# Chat Format Paramschat_format:Optional[str]=None,chat_handler:Optional[llama_chat_format.LlamaChatCompletionHandler]=None,# Speculative Decodingdraft_model:Optional[LlamaDraftModel]=None,# Tokenizer Overridetokenizer:Optional[BaseLlamaTokenizer]=None,# KV cache quantizationtype_k:Optional[int]=None,type_v:Optional[int]=None,# Miscspm_infill:bool=False,verbose:bool=True,# Extra Params**kwargs,# type: ignore):"""Load a llama.cpp model from `model_path`.    Examples:        Basic usage        >>> import llama_cpp        >>> model = llama_cpp.Llama(        ...     model_path="path/to/model",        ... )        >>> print(model("The quick brown fox jumps ", stop=["."])["choices"][0]["text"])        the lazy dog        Loading a chat model        >>> import llama_cpp        >>> model = llama_cpp.Llama(        ...     model_path="path/to/model",        ...     chat_format="llama-2",        ... )        >>> print(model.create_chat_completion(        ...     messages=[{        ...         "role": "user",        ...         "content": "what is the meaning of life?"        ...     }]        ... ))    Args:        model_path: Path to the model.        n_gpu_layers: Number of layers to offload to GPU (-ngl). If -1, all layers are offloaded.        split_mode: How to split the model across GPUs. See llama_cpp.LLAMA_SPLIT_* for options.        main_gpu: main_gpu interpretation depends on split_mode: LLAMA_SPLIT_MODE_NONE: the GPU that is used for the entire model. LLAMA_SPLIT_MODE_ROW: the GPU that is used for small tensors and intermediate results. LLAMA_SPLIT_MODE_LAYER: ignored        tensor_split: How split tensors should be distributed across GPUs. If None, the model is not split.        vocab_only: Only load the vocabulary no weights.        use_mmap: Use mmap if possible.        use_mlock: Force the system to keep the model in RAM.        kv_overrides: Key-value overrides for the model.        seed: RNG seed, -1 for random        n_ctx: Text context, 0 = from model        n_batch: Prompt processing maximum batch size        n_ubatch: Physical batch size        n_threads: Number of threads to use for generation        n_threads_batch: Number of threads to use for batch processing        rope_scaling_type: RoPE scaling type, from `enum llama_rope_scaling_type`. ref: https://github.com/ggerganov/llama.cpp/pull/2054        pooling_type: Pooling type, from `enum llama_pooling_type`.        rope_freq_base: RoPE base frequency, 0 = from model        rope_freq_scale: RoPE frequency scaling factor, 0 = from model        yarn_ext_factor: YaRN extrapolation mix factor, negative = from model        yarn_attn_factor: YaRN magnitude scaling factor        yarn_beta_fast: YaRN low correction dim        yarn_beta_slow: YaRN high correction dim        yarn_orig_ctx: YaRN original context size        logits_all: Return logits for all tokens, not just the last token. Must be True for completion to return logprobs.        embedding: Embedding mode only.        offload_kqv: Offload K, Q, V to GPU.        flash_attn: Use flash attention.        op_offloat: offload host tensor operations to device        swa_full: use full-size SWA cache (https://github.com/ggml-org/llama.cpp/pull/13194#issuecomment-2868343055)        no_perf: Measure performance timings.        last_n_tokens_size: Maximum number of tokens to keep in the last_n_tokens deque.        lora_base: Optional path to base model, useful if using a quantized base model and you want to apply LoRA to an f16 model.        lora_path: Path to a LoRA file to apply to the model.        numa: numa policy        chat_format: String specifying the chat format to use when calling create_chat_completion.        chat_handler: Optional chat handler to use when calling create_chat_completion.        draft_model: Optional draft model to use for speculative decoding.        tokenizer: Optional tokenizer to override the default tokenizer from llama.cpp.        verbose: Print verbose output to stderr.        type_k: KV cache data type for K (default: f16)        type_v: KV cache data type for V (default: f16)        spm_infill: Use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this.    Raises:        ValueError: If the model path does not exist.    Returns:        A Llama instance.    """self.verbose=verboseself._stack=contextlib.ExitStack()set_verbose(verbose)ifnotLlama.__backend_initialized:withsuppress_stdout_stderr(disable=verbose):llama_cpp.llama_backend_init()Llama.__backend_initialized=Trueifisinstance(numa,bool):self.numa=(llama_cpp.GGML_NUMA_STRATEGY_DISTRIBUTEifnumaelsellama_cpp.GGML_NUMA_STRATEGY_DISABLED)else:self.numa=numaifself.numa!=llama_cpp.GGML_NUMA_STRATEGY_DISABLED:withsuppress_stdout_stderr(disable=verbose):llama_cpp.llama_numa_init(self.numa)self.model_path=model_path# Model Paramsself.model_params=llama_cpp.llama_model_default_params()self.model_params.n_gpu_layers=(0x7FFFFFFFifn_gpu_layers==-1elsen_gpu_layers)# 0x7FFFFFFF is INT32 max, will be auto set to all layersself.model_params.split_mode=split_modeself.model_params.main_gpu=main_gpuself.tensor_split=tensor_splitself._c_tensor_split=Noneifself.tensor_splitisnotNone:iflen(self.tensor_split)>llama_cpp.LLAMA_MAX_DEVICES:raiseValueError(f"Attempt to split tensors that exceed maximum supported devices. Current LLAMA_MAX_DEVICES={llama_cpp.LLAMA_MAX_DEVICES}")# Type conversion and expand the list to the length of LLAMA_MAX_DEVICESFloatArray=ctypes.c_float*llama_cpp.LLAMA_MAX_DEVICESself._c_tensor_split=FloatArray(*tensor_split# type: ignore)# keep a reference to the array so it is not gc'dself.model_params.tensor_split=self._c_tensor_splitself.model_params.vocab_only=vocab_onlyself.model_params.use_mmap=use_mmapiflora_pathisNoneelseFalseself.model_params.use_mlock=use_mlock# kv_overrides is the original python dictself.kv_overrides=kv_overridesifkv_overridesisnotNone:# _kv_overrides_array is a ctypes.Array of llama_model_kv_override Structskvo_array_len=len(kv_overrides)+1# for sentinel elementself._kv_overrides_array=(llama_cpp.llama_model_kv_override*kvo_array_len)()fori,(k,v)inenumerate(kv_overrides.items()):self._kv_overrides_array[i].key=k.encode("utf-8")ifisinstance(v,bool):self._kv_overrides_array[i].tag=llama_cpp.LLAMA_KV_OVERRIDE_TYPE_BOOLself._kv_overrides_array[i].value.val_bool=velifisinstance(v,int):self._kv_overrides_array[i].tag=llama_cpp.LLAMA_KV_OVERRIDE_TYPE_INTself._kv_overrides_array[i].value.val_i64=velifisinstance(v,float):self._kv_overrides_array[i].tag=llama_cpp.LLAMA_KV_OVERRIDE_TYPE_FLOATself._kv_overrides_array[i].value.val_f64=velifisinstance(v,str):# type: ignorev_bytes=v.encode("utf-8")iflen(v_bytes)>128:# TODO: Make this a constantraiseValueError(f"Value for{k} is too long:{v}")v_bytes=v_bytes.ljust(128,b"\0")self._kv_overrides_array[i].tag=llama_cpp.LLAMA_KV_OVERRIDE_TYPE_STR# copy min(v_bytes, 128) to str_valueaddress=typing.cast(int,ctypes.addressof(self._kv_overrides_array[i].value)+llama_cpp.llama_model_kv_override_value.val_str.offset,)buffer_start=ctypes.cast(address,ctypes.POINTER(ctypes.c_char))ctypes.memmove(buffer_start,v_bytes,128,)else:raiseValueError(f"Unknown value type for{k}:{v}")self._kv_overrides_array[-1].key=b"\0"# ensure sentinel element is zeroedself.model_params.kv_overrides=self._kv_overrides_arrayself.n_batch=min(n_ctx,n_batch)# ???self.n_threads=n_threadsormax(multiprocessing.cpu_count()//2,1)self.n_threads_batch=n_threads_batchormultiprocessing.cpu_count()# Used by the samplerself._seed=seedorllama_cpp.LLAMA_DEFAULT_SEED# Context Paramsself.context_params=llama_cpp.llama_context_default_params()self.context_params.n_ctx=n_ctxself.context_params.n_batch=self.n_batchself.context_params.n_ubatch=min(self.n_batch,n_ubatch)self.context_params.n_threads=self.n_threadsself.context_params.n_threads_batch=self.n_threads_batchself.context_params.rope_scaling_type=(rope_scaling_typeifrope_scaling_typeisnotNoneelsellama_cpp.LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED)self.context_params.pooling_type=pooling_typeself.context_params.rope_freq_base=(rope_freq_baseifrope_freq_base!=0.0else0)self.context_params.rope_freq_scale=(rope_freq_scaleifrope_freq_scale!=0.0else0)self.context_params.yarn_ext_factor=(yarn_ext_factorifyarn_ext_factor!=0.0else0)self.context_params.yarn_attn_factor=(yarn_attn_factorifyarn_attn_factor!=0.0else0)self.context_params.yarn_beta_fast=(yarn_beta_fastifyarn_beta_fast!=0.0else0)self.context_params.yarn_beta_slow=(yarn_beta_slowifyarn_beta_slow!=0.0else0)self.context_params.yarn_orig_ctx=yarn_orig_ctxifyarn_orig_ctx!=0else0self._logits_all=logits_allifdraft_modelisNoneelseTrueself.context_params.embeddings=embedding# TODO: Rename to embeddingsself.context_params.offload_kqv=offload_kqvself.context_params.flash_attn=flash_attnifop_offloatisnotNone:self.context_params.op_offloat=op_offloatifswa_fullisnotNone:self.context_params.swa_full=swa_full#  KV cache quantizationiftype_kisnotNone:self.context_params.type_k=type_kiftype_visnotNone:self.context_params.type_v=type_v# Sampling Paramsself.context_params.no_perf=no_perfself.last_n_tokens_size=last_n_tokens_sizeself.cache:Optional[BaseLlamaCache]=Noneself.lora_base=lora_baseself.lora_scale=lora_scaleself.lora_path=lora_pathself.spm_infill=spm_infillifnotos.path.exists(model_path):raiseValueError(f"Model path does not exist:{model_path}")self._model=self._stack.enter_context(contextlib.closing(internals.LlamaModel(path_model=self.model_path,params=self.model_params,verbose=self.verbose,)))# Override tokenizerself.tokenizer_=tokenizerorLlamaTokenizer(self)# Set the default value for the context and correct the batchifn_ctx==0:n_ctx=self._model.n_ctx_train()self.n_batch=min(n_ctx,n_batch)self.context_params.n_ctx=self._model.n_ctx_train()self.context_params.n_batch=self.n_batchself.context_params.n_ubatch=min(self.n_batch,n_ubatch)self._ctx=self._stack.enter_context(contextlib.closing(internals.LlamaContext(model=self._model,params=self.context_params,verbose=self.verbose,)))self._batch=self._stack.enter_context(contextlib.closing(internals.LlamaBatch(n_tokens=self.n_batch,embd=0,n_seq_max=self.context_params.n_ctx,verbose=self.verbose,)))self._lora_adapter:Optional[llama_cpp.llama_adapter_lora_p]=Noneifself.lora_path:self._lora_adapter=llama_cpp.llama_adapter_lora_init(self._model.model,self.lora_path.encode("utf-8"),)ifself._lora_adapterisNone:raiseRuntimeError(f"Failed to initialize LoRA adapter from lora path:{self.lora_path}")deffree_lora_adapter():ifself._lora_adapterisNone:returnllama_cpp.llama_adapter_lora_free(self._lora_adapter)self._lora_adapter=Noneself._stack.callback(free_lora_adapter)ifllama_cpp.llama_set_adapter_lora(self._ctx.ctx,self._lora_adapter,self.lora_scale):raiseRuntimeError(f"Failed to set LoRA adapter from lora path:{self.lora_path}")ifself.verbose:print(llama_cpp.llama_print_system_info().decode("utf-8"),file=sys.stderr)self.chat_format=chat_formatself.chat_handler=chat_handlerself._chat_handlers:Dict[str,llama_chat_format.LlamaChatCompletionHandler]={}self.draft_model=draft_modelself._n_vocab=self.n_vocab()self._n_ctx=self.n_ctx()self._token_nl=self.token_nl()self._token_eos=self.token_eos()self._candidates=internals.LlamaTokenDataArray(n_vocab=self._n_vocab)self.n_tokens=0self.input_ids:npt.NDArray[np.intc]=np.ndarray((n_ctx,),dtype=np.intc)self.scores:npt.NDArray[np.single]=np.ndarray((n_ctxiflogits_all==Trueelsen_batch,self._n_vocab),dtype=np.single)self._mirostat_mu=ctypes.c_float(2.0*5.0)# TODO: Move this to sampling contexttry:self.metadata=self._model.metadata()exceptExceptionase:self.metadata={}ifself.verbose:print(f"Failed to load metadata:{e}",file=sys.stderr)ifself.verbose:print(f"Model metadata:{self.metadata}",file=sys.stderr)eos_token_id=self.token_eos()bos_token_id=self.token_bos()eos_token=(self._model.token_get_text(eos_token_id)ifeos_token_id!=-1else"")bos_token=(self._model.token_get_text(bos_token_id)ifbos_token_id!=-1else"")# Unfortunately the llama.cpp API does not return metadata arrays, so we can't get template names from tokenizer.chat_templatestemplate_choices=dict((name[10:],template)forname,templateinself.metadata.items()ifname.startswith("tokenizer.chat_template."))if"tokenizer.chat_template"inself.metadata:template_choices["chat_template.default"]=self.metadata["tokenizer.chat_template"]ifself.verboseandtemplate_choices:print(f"Available chat formats from metadata:{', '.join(template_choices.keys())}",file=sys.stderr,)forname,templateintemplate_choices.items():self._chat_handlers[name]=llama_chat_format.Jinja2ChatFormatter(template=template,eos_token=eos_token,bos_token=bos_token,stop_token_ids=[eos_token_id],).to_chat_handler()if(self.chat_formatisNoneandself.chat_handlerisNoneand"chat_template.default"intemplate_choices):chat_format=llama_chat_format.guess_chat_format_from_gguf_metadata(self.metadata)ifchat_formatisnotNone:self.chat_format=chat_formatifself.verbose:print(f"Guessed chat format:{chat_format}",file=sys.stderr)else:ifself.verbose:print(f"Using gguf chat template:{template_choices['chat_template.default']}",file=sys.stderr,)print(f"Using chat eos_token:{eos_token}",file=sys.stderr)print(f"Using chat bos_token:{bos_token}",file=sys.stderr)self.chat_format="chat_template.default"ifself.chat_formatisNoneandself.chat_handlerisNone:self.chat_format="llama-2"ifself.verbose:print(f"Using fallback chat format:{self.chat_format}",file=sys.stderr)self._sampler=None

tokenize(text,add_bos=True,special=False)

Tokenize a string.

Parameters:

  • text (bytes) –

    The utf-8 encoded string to tokenize.

  • add_bos (bool, default:True) –

    Whether to add a beginning of sequence token.

  • special (bool, default:False) –

    Whether to tokenize special tokens.

Raises:

Returns:

Source code inllama_cpp/llama.py
deftokenize(self,text:bytes,add_bos:bool=True,special:bool=False)->List[int]:"""Tokenize a string.    Args:        text: The utf-8 encoded string to tokenize.        add_bos: Whether to add a beginning of sequence token.        special: Whether to tokenize special tokens.    Raises:        RuntimeError: If the tokenization failed.    Returns:        A list of tokens.    """returnself.tokenizer_.tokenize(text,add_bos,special)

detokenize(tokens,prev_tokens=None,special=False)

Detokenize a list of tokens.

Parameters:

  • tokens (List[int]) –

    The list of tokens to detokenize.

  • prev_tokens (Optional[List[int]], default:None) –

    The list of previous tokens. Offset mapping will be performed if provided.

  • special (bool, default:False) –

    Whether to detokenize special tokens.

Returns:

  • bytes

    The detokenized string.

Source code inllama_cpp/llama.py
defdetokenize(self,tokens:List[int],prev_tokens:Optional[List[int]]=None,special:bool=False,)->bytes:"""Detokenize a list of tokens.    Args:        tokens: The list of tokens to detokenize.        prev_tokens: The list of previous tokens. Offset mapping will be performed if provided.        special: Whether to detokenize special tokens.    Returns:        The detokenized string.    """returnself.tokenizer_.detokenize(tokens,prev_tokens=prev_tokens,special=special)

reset()

Reset the model state.

Source code inllama_cpp/llama.py
defreset(self):"""Reset the model state."""self.n_tokens=0

eval(tokens)

Evaluate a list of tokens.

Parameters:

  • tokens (Sequence[int]) –

    The list of tokens to evaluate.

Source code inllama_cpp/llama.py
defeval(self,tokens:Sequence[int]):"""Evaluate a list of tokens.    Args:        tokens: The list of tokens to evaluate.    """self._ctx.kv_cache_seq_rm(-1,self.n_tokens,-1)foriinrange(0,len(tokens),self.n_batch):batch=tokens[i:min(len(tokens),i+self.n_batch)]n_past=self.n_tokensn_tokens=len(batch)self._batch.set_batch(batch=batch,n_past=n_past,logits_all=self._logits_all)self._ctx.decode(self._batch)# Save tokensself.input_ids[n_past:n_past+n_tokens]=batch# Save logitsifself._logits_all:rows=n_tokenscols=self._n_vocablogits=np.ctypeslib.as_array(self._ctx.get_logits(),shape=(rows*cols,))self.scores[n_past:n_past+n_tokens,:].reshape(-1)[::]=logitselse:# rows = 1# cols = self._n_vocab# logits = np.ctypeslib.as_array(#     self._ctx.get_logits(), shape=(rows * cols,)# )# self.scores[n_past + n_tokens - 1, :].reshape(-1)[::] = logits# NOTE: Now that sampling is done inside the sampler, logits are only needed for logprobs which requires logits_allpass# Update n_tokensself.n_tokens+=n_tokens

sample(top_k=40,top_p=0.95,min_p=0.05,typical_p=1.0,temp=0.8,repeat_penalty=1.0,frequency_penalty=0.0,presence_penalty=0.0,tfs_z=1.0,mirostat_mode=0,mirostat_eta=0.1,mirostat_tau=5.0,penalize_nl=True,logits_processor=None,grammar=None,idx=None)

Sample a token from the model.

Parameters:

  • top_k (int, default:40) –

    The top-k sampling parameter.

  • top_p (float, default:0.95) –

    The top-p sampling parameter.

  • temp (float, default:0.8) –

    The temperature parameter.

  • repeat_penalty (float, default:1.0) –

    The repeat penalty parameter.

Returns:

  • The sampled token.

Source code inllama_cpp/llama.py
defsample(self,top_k:int=40,top_p:float=0.95,min_p:float=0.05,typical_p:float=1.0,temp:float=0.80,repeat_penalty:float=1.0,frequency_penalty:float=0.0,presence_penalty:float=0.0,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_eta:float=0.1,mirostat_tau:float=5.0,penalize_nl:bool=True,logits_processor:Optional[LogitsProcessorList]=None,grammar:Optional[LlamaGrammar]=None,idx:Optional[int]=None,):"""Sample a token from the model.    Args:        top_k: The top-k sampling parameter.        top_p: The top-p sampling parameter.        temp: The temperature parameter.        repeat_penalty: The repeat penalty parameter.    Returns:        The sampled token.    """assertself.n_tokens>0tmp_sampler=Falseifself._samplerisNone:tmp_sampler=Trueself._sampler=self._init_sampler(top_k=top_k,top_p=top_p,min_p=min_p,typical_p=typical_p,temp=temp,repeat_penalty=repeat_penalty,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,penalize_nl=penalize_nl,logits_processor=logits_processor,grammar=grammar,)ridx=idx-self.n_tokensifidxisnotNoneelse-1assertself.ctxisnotNonetoken=self._sampler.sample(self._ctx,ridx)iftmp_sampler:self._sampler=Nonereturntoken

generate(tokens,top_k=40,top_p=0.95,min_p=0.05,typical_p=1.0,temp=0.8,repeat_penalty=1.0,reset=True,frequency_penalty=0.0,presence_penalty=0.0,tfs_z=1.0,mirostat_mode=0,mirostat_tau=5.0,mirostat_eta=0.1,penalize_nl=True,logits_processor=None,stopping_criteria=None,grammar=None)

Create a generator of tokens from a prompt.

Examples:

>>>llama=Llama("models/ggml-7b.bin")>>>tokens=llama.tokenize(b"Hello, world!")>>>fortokeninllama.generate(tokens,top_k=40,top_p=0.95,temp=1.0,repeat_penalty=1.0):...print(llama.detokenize([token]))

Parameters:

  • tokens (Sequence[int]) –

    The prompt tokens.

  • top_k (int, default:40) –

    The top-k sampling parameter.

  • top_p (float, default:0.95) –

    The top-p sampling parameter.

  • temp (float, default:0.8) –

    The temperature parameter.

  • repeat_penalty (float, default:1.0) –

    The repeat penalty parameter.

  • reset (bool, default:True) –

    Whether to reset the model state.

Yields:

  • int

    The generated tokens.

Source code inllama_cpp/llama.py
defgenerate(self,tokens:Sequence[int],top_k:int=40,top_p:float=0.95,min_p:float=0.05,typical_p:float=1.0,temp:float=0.80,repeat_penalty:float=1.0,reset:bool=True,frequency_penalty:float=0.0,presence_penalty:float=0.0,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_tau:float=5.0,mirostat_eta:float=0.1,penalize_nl:bool=True,logits_processor:Optional[LogitsProcessorList]=None,stopping_criteria:Optional[StoppingCriteriaList]=None,grammar:Optional[LlamaGrammar]=None,)->Generator[int,Optional[Sequence[int]],None]:"""Create a generator of tokens from a prompt.    Examples:        >>> llama = Llama("models/ggml-7b.bin")        >>> tokens = llama.tokenize(b"Hello, world!")        >>> for token in llama.generate(tokens, top_k=40, top_p=0.95, temp=1.0, repeat_penalty=1.0):        ...     print(llama.detokenize([token]))    Args:        tokens: The prompt tokens.        top_k: The top-k sampling parameter.        top_p: The top-p sampling parameter.        temp: The temperature parameter.        repeat_penalty: The repeat penalty parameter.        reset: Whether to reset the model state.    Yields:        The generated tokens.    """# Reset mirostat samplingself._mirostat_mu=ctypes.c_float(2.0*mirostat_tau)self._sampler=self._init_sampler(top_k=top_k,top_p=top_p,min_p=min_p,typical_p=typical_p,temp=temp,repeat_penalty=repeat_penalty,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,penalize_nl=penalize_nl,logits_processor=logits_processor,grammar=grammar,)# Check for kv cache prefix matchifresetandself.n_tokens>0:longest_prefix=0fora,binzip(self._input_ids,tokens[:-1]):ifa==b:longest_prefix+=1else:breakiflongest_prefix>0:reset=Falsetokens=tokens[longest_prefix:]self.n_tokens=longest_prefixifself.verbose:print(f"Llama.generate:{longest_prefix} prefix-match hit, "f"remaining{len(tokens)} prompt tokens to eval",file=sys.stderr,)# Reset the model stateifreset:self.reset()# # Reset the grammar# if grammar is not None:#     grammar.reset()sample_idx=self.n_tokens+len(tokens)-1tokens=list(tokens)# Eval and samplewhileTrue:self.eval(tokens)whilesample_idx<self.n_tokens:token=self.sample(top_k=top_k,top_p=top_p,min_p=min_p,typical_p=typical_p,temp=temp,repeat_penalty=repeat_penalty,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,logits_processor=logits_processor,grammar=grammar,penalize_nl=penalize_nl,idx=sample_idx,)sample_idx+=1ifstopping_criteriaisnotNoneandstopping_criteria(self._input_ids[:sample_idx],self._scores[sample_idx-self.n_tokens,:]):returntokens_or_none=yieldtokentokens.clear()tokens.append(token)iftokens_or_noneisnotNone:tokens.extend(tokens_or_none)ifsample_idx<self.n_tokensandtoken!=self._input_ids[sample_idx]:self.n_tokens=sample_idxself._ctx.kv_cache_seq_rm(-1,self.n_tokens,-1)breakifself.draft_modelisnotNone:self.input_ids[self.n_tokens:self.n_tokens+len(tokens)]=tokensdraft_tokens=self.draft_model(self.input_ids[:self.n_tokens+len(tokens)])tokens.extend(draft_tokens.astype(int)[:self._n_ctx-self.n_tokens-len(tokens)])

create_embedding(input,model=None)

Embed a string.

Parameters:

Returns:

Source code inllama_cpp/llama.py
defcreate_embedding(self,input:Union[str,List[str]],model:Optional[str]=None)->CreateEmbeddingResponse:"""Embed a string.    Args:        input: The utf-8 encoded string to embed.    Returns:        An embedding object.    """model_name:str=modelifmodelisnotNoneelseself.model_pathinput=inputifisinstance(input,list)else[input]# get numeric embeddingsembeds:Union[List[List[float]],List[List[List[float]]]]total_tokens:intembeds,total_tokens=self.embed(input,return_count=True)# type: ignore# convert to CreateEmbeddingResponsedata:List[Embedding]=[{"object":"embedding","embedding":emb,"index":idx,}foridx,embinenumerate(embeds)]return{"object":"list","data":data,"model":model_name,"usage":{"prompt_tokens":total_tokens,"total_tokens":total_tokens,},}

embed(input,normalize=False,truncate=True,return_count=False)

Embed a string.

Parameters:

Returns:

  • A list of embeddings

Source code inllama_cpp/llama.py
defembed(self,input:Union[str,List[str]],normalize:bool=False,truncate:bool=True,return_count:bool=False,):"""Embed a string.    Args:        input: The utf-8 encoded string to embed.    Returns:        A list of embeddings    """n_embd=self.n_embd()n_batch=self.n_batch# get pooling informationpooling_type=self.pooling_type()logits_all=pooling_type==llama_cpp.LLAMA_POOLING_TYPE_NONEifself.context_params.embeddingsisFalse:raiseRuntimeError("Llama model must be created with embedding=True to call this method")ifself.verbose:llama_cpp.llama_perf_context_reset(self._ctx.ctx)ifisinstance(input,str):inputs=[input]else:inputs=input# reset batchself._batch.reset()# decode and fetch embeddingsdata:Union[List[List[float]],List[List[List[float]]]]=[]defdecode_batch(seq_sizes:List[int]):llama_cpp.llama_kv_self_clear(self._ctx.ctx)self._ctx.decode(self._batch)self._batch.reset()# store embeddingsifpooling_type==llama_cpp.LLAMA_POOLING_TYPE_NONE:pos:int=0fori,sizeinenumerate(seq_sizes):ptr=llama_cpp.llama_get_embeddings(self._ctx.ctx)embedding:List[List[float]]=[ptr[pos+j*n_embd:pos+(j+1)*n_embd]forjinrange(size)]ifnormalize:embedding=[internals.normalize_embedding(e)foreinembedding]data.append(embedding)pos+=sizeelse:foriinrange(len(seq_sizes)):ptr=llama_cpp.llama_get_embeddings_seq(self._ctx.ctx,i)embedding:List[float]=ptr[:n_embd]ifnormalize:embedding=internals.normalize_embedding(embedding)data.append(embedding)# init statetotal_tokens=0s_batch=[]t_batch=0p_batch=0# accumulate batches and encodefortextininputs:tokens=self.tokenize(text.encode("utf-8"))iftruncate:tokens=tokens[:n_batch]n_tokens=len(tokens)total_tokens+=n_tokens# check for overrunifn_tokens>n_batch:raiseValueError(f"Requested tokens ({n_tokens}) exceed batch size of{n_batch}")# time to eval batchift_batch+n_tokens>n_batch:decode_batch(s_batch)s_batch=[]t_batch=0p_batch=0# add to batchself._batch.add_sequence(tokens,p_batch,logits_all)# update batch statss_batch.append(n_tokens)t_batch+=n_tokensp_batch+=1# hanlde last batchdecode_batch(s_batch)ifself.verbose:llama_cpp.llama_perf_context_print(self._ctx.ctx)output=data[0]ifisinstance(input,str)elsedatallama_cpp.llama_kv_self_clear(self._ctx.ctx)self.reset()ifreturn_count:returnoutput,total_tokenselse:returnoutput

create_completion(prompt,suffix=None,max_tokens=16,temperature=0.8,top_p=0.95,min_p=0.05,typical_p=1.0,logprobs=None,echo=False,stop=[],frequency_penalty=0.0,presence_penalty=0.0,repeat_penalty=1.0,top_k=40,stream=False,seed=None,tfs_z=1.0,mirostat_mode=0,mirostat_tau=5.0,mirostat_eta=0.1,model=None,stopping_criteria=None,logits_processor=None,grammar=None,logit_bias=None)

Generate text from a prompt.

Parameters:

  • prompt (Union[str,List[int]]) –

    The prompt to generate text from.

  • suffix (Optional[str], default:None) –

    A suffix to append to the generated text. If None, no suffix is appended.

  • max_tokens (Optional[int], default:16) –

    The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.

  • temperature (float, default:0.8) –

    The temperature to use for sampling.

  • top_p (float, default:0.95) –

    The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751

  • min_p (float, default:0.05) –

    The min-p value to use for minimum p sampling. Minimum P sampling as described inhttps://github.com/ggerganov/llama.cpp/pull/3841

  • typical_p (float, default:1.0) –

    The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paperhttps://arxiv.org/abs/2202.00666.

  • logprobs (Optional[int], default:None) –

    The number of logprobs to return. If None, no logprobs are returned.

  • echo (bool, default:False) –

    Whether to echo the prompt.

  • stop (Optional[Union[str,List[str]]], default:[]) –

    A list of strings to stop generation when encountered.

  • frequency_penalty (float, default:0.0) –

    The penalty to apply to tokens based on their frequency in the prompt.

  • presence_penalty (float, default:0.0) –

    The penalty to apply to tokens based on their presence in the prompt.

  • repeat_penalty (float, default:1.0) –

    The penalty to apply to repeated tokens.

  • top_k (int, default:40) –

    The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751

  • stream (bool, default:False) –

    Whether to stream the results.

  • seed (Optional[int], default:None) –

    The seed to use for sampling.

  • tfs_z (float, default:1.0) –

    The tail-free sampling parameter. Tail Free Sampling described inhttps://www.trentonbricken.com/Tail-Free-Sampling/.

  • mirostat_mode (int, default:0) –

    The mirostat sampling mode.

  • mirostat_tau (float, default:5.0) –

    The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.

  • mirostat_eta (float, default:0.1) –

    The learning rate used to updatemu based on the error between the target and observed surprisal of the sampled word. A larger learning rate will causemu to be updated more quickly, while a smaller learning rate will result in slower updates.

  • model (Optional[str], default:None) –

    The name to use for the model in the completion object.

  • stopping_criteria (Optional[StoppingCriteriaList], default:None) –

    A list of stopping criteria to use.

  • logits_processor (Optional[LogitsProcessorList], default:None) –

    A list of logits processors to use.

  • grammar (Optional[LlamaGrammar], default:None) –

    A grammar to use for constrained sampling.

  • logit_bias (Optional[Dict[int,float]], default:None) –

    A logit bias to use.

Raises:

  • ValueError

    If the requested tokens exceed the context window.

  • RuntimeError

    If the prompt fails to tokenize or the model fails to evaluate the prompt.

Returns:

Source code inllama_cpp/llama.py
defcreate_completion(self,prompt:Union[str,List[int]],suffix:Optional[str]=None,max_tokens:Optional[int]=16,temperature:float=0.8,top_p:float=0.95,min_p:float=0.05,typical_p:float=1.0,logprobs:Optional[int]=None,echo:bool=False,stop:Optional[Union[str,List[str]]]=[],frequency_penalty:float=0.0,presence_penalty:float=0.0,repeat_penalty:float=1.0,top_k:int=40,stream:bool=False,seed:Optional[int]=None,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_tau:float=5.0,mirostat_eta:float=0.1,model:Optional[str]=None,stopping_criteria:Optional[StoppingCriteriaList]=None,logits_processor:Optional[LogitsProcessorList]=None,grammar:Optional[LlamaGrammar]=None,logit_bias:Optional[Dict[int,float]]=None,)->Union[CreateCompletionResponse,Iterator[CreateCompletionStreamResponse]]:"""Generate text from a prompt.    Args:        prompt: The prompt to generate text from.        suffix: A suffix to append to the generated text. If None, no suffix is appended.        max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.        temperature: The temperature to use for sampling.        top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751        min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841        typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.        logprobs: The number of logprobs to return. If None, no logprobs are returned.        echo: Whether to echo the prompt.        stop: A list of strings to stop generation when encountered.        frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.        presence_penalty: The penalty to apply to tokens based on their presence in the prompt.        repeat_penalty: The penalty to apply to repeated tokens.        top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751        stream: Whether to stream the results.        seed: The seed to use for sampling.        tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.        mirostat_mode: The mirostat sampling mode.        mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.        mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.        model: The name to use for the model in the completion object.        stopping_criteria: A list of stopping criteria to use.        logits_processor: A list of logits processors to use.        grammar: A grammar to use for constrained sampling.        logit_bias: A logit bias to use.    Raises:        ValueError: If the requested tokens exceed the context window.        RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.    Returns:        Response object containing the generated text.    """completion_or_chunks=self._create_completion(prompt=prompt,suffix=suffix,max_tokens=-1ifmax_tokensisNoneelsemax_tokens,temperature=temperature,top_p=top_p,min_p=min_p,typical_p=typical_p,logprobs=logprobs,echo=echo,stop=stop,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,repeat_penalty=repeat_penalty,top_k=top_k,stream=stream,seed=seed,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,model=model,stopping_criteria=stopping_criteria,logits_processor=logits_processor,grammar=grammar,logit_bias=logit_bias,)ifstream:chunks:Iterator[CreateCompletionStreamResponse]=completion_or_chunksreturnchunkscompletion:Completion=next(completion_or_chunks)# type: ignorereturncompletion

__call__(prompt,suffix=None,max_tokens=16,temperature=0.8,top_p=0.95,min_p=0.05,typical_p=1.0,logprobs=None,echo=False,stop=[],frequency_penalty=0.0,presence_penalty=0.0,repeat_penalty=1.0,top_k=40,stream=False,seed=None,tfs_z=1.0,mirostat_mode=0,mirostat_tau=5.0,mirostat_eta=0.1,model=None,stopping_criteria=None,logits_processor=None,grammar=None,logit_bias=None)

Generate text from a prompt.

Parameters:

  • prompt (str) –

    The prompt to generate text from.

  • suffix (Optional[str], default:None) –

    A suffix to append to the generated text. If None, no suffix is appended.

  • max_tokens (Optional[int], default:16) –

    The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.

  • temperature (float, default:0.8) –

    The temperature to use for sampling.

  • top_p (float, default:0.95) –

    The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751

  • min_p (float, default:0.05) –

    The min-p value to use for minimum p sampling. Minimum P sampling as described inhttps://github.com/ggerganov/llama.cpp/pull/3841

  • typical_p (float, default:1.0) –

    The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paperhttps://arxiv.org/abs/2202.00666.

  • logprobs (Optional[int], default:None) –

    The number of logprobs to return. If None, no logprobs are returned.

  • echo (bool, default:False) –

    Whether to echo the prompt.

  • stop (Optional[Union[str,List[str]]], default:[]) –

    A list of strings to stop generation when encountered.

  • frequency_penalty (float, default:0.0) –

    The penalty to apply to tokens based on their frequency in the prompt.

  • presence_penalty (float, default:0.0) –

    The penalty to apply to tokens based on their presence in the prompt.

  • repeat_penalty (float, default:1.0) –

    The penalty to apply to repeated tokens.

  • top_k (int, default:40) –

    The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751

  • stream (bool, default:False) –

    Whether to stream the results.

  • seed (Optional[int], default:None) –

    The seed to use for sampling.

  • tfs_z (float, default:1.0) –

    The tail-free sampling parameter. Tail Free Sampling described inhttps://www.trentonbricken.com/Tail-Free-Sampling/.

  • mirostat_mode (int, default:0) –

    The mirostat sampling mode.

  • mirostat_tau (float, default:5.0) –

    The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.

  • mirostat_eta (float, default:0.1) –

    The learning rate used to updatemu based on the error between the target and observed surprisal of the sampled word. A larger learning rate will causemu to be updated more quickly, while a smaller learning rate will result in slower updates.

  • model (Optional[str], default:None) –

    The name to use for the model in the completion object.

  • stopping_criteria (Optional[StoppingCriteriaList], default:None) –

    A list of stopping criteria to use.

  • logits_processor (Optional[LogitsProcessorList], default:None) –

    A list of logits processors to use.

  • grammar (Optional[LlamaGrammar], default:None) –

    A grammar to use for constrained sampling.

  • logit_bias (Optional[Dict[int,float]], default:None) –

    A logit bias to use.

Raises:

  • ValueError

    If the requested tokens exceed the context window.

  • RuntimeError

    If the prompt fails to tokenize or the model fails to evaluate the prompt.

Returns:

Source code inllama_cpp/llama.py
def__call__(self,prompt:str,suffix:Optional[str]=None,max_tokens:Optional[int]=16,temperature:float=0.8,top_p:float=0.95,min_p:float=0.05,typical_p:float=1.0,logprobs:Optional[int]=None,echo:bool=False,stop:Optional[Union[str,List[str]]]=[],frequency_penalty:float=0.0,presence_penalty:float=0.0,repeat_penalty:float=1.0,top_k:int=40,stream:bool=False,seed:Optional[int]=None,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_tau:float=5.0,mirostat_eta:float=0.1,model:Optional[str]=None,stopping_criteria:Optional[StoppingCriteriaList]=None,logits_processor:Optional[LogitsProcessorList]=None,grammar:Optional[LlamaGrammar]=None,logit_bias:Optional[Dict[int,float]]=None,)->Union[CreateCompletionResponse,Iterator[CreateCompletionStreamResponse]]:"""Generate text from a prompt.    Args:        prompt: The prompt to generate text from.        suffix: A suffix to append to the generated text. If None, no suffix is appended.        max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.        temperature: The temperature to use for sampling.        top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751        min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841        typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.        logprobs: The number of logprobs to return. If None, no logprobs are returned.        echo: Whether to echo the prompt.        stop: A list of strings to stop generation when encountered.        frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.        presence_penalty: The penalty to apply to tokens based on their presence in the prompt.        repeat_penalty: The penalty to apply to repeated tokens.        top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751        stream: Whether to stream the results.        seed: The seed to use for sampling.        tfs_z: The tail-free sampling parameter. Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.        mirostat_mode: The mirostat sampling mode.        mirostat_tau: The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.        mirostat_eta: The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.        model: The name to use for the model in the completion object.        stopping_criteria: A list of stopping criteria to use.        logits_processor: A list of logits processors to use.        grammar: A grammar to use for constrained sampling.        logit_bias: A logit bias to use.    Raises:        ValueError: If the requested tokens exceed the context window.        RuntimeError: If the prompt fails to tokenize or the model fails to evaluate the prompt.    Returns:        Response object containing the generated text.    """returnself.create_completion(prompt=prompt,suffix=suffix,max_tokens=max_tokens,temperature=temperature,top_p=top_p,min_p=min_p,typical_p=typical_p,logprobs=logprobs,echo=echo,stop=stop,frequency_penalty=frequency_penalty,presence_penalty=presence_penalty,repeat_penalty=repeat_penalty,top_k=top_k,stream=stream,seed=seed,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,model=model,stopping_criteria=stopping_criteria,logits_processor=logits_processor,grammar=grammar,logit_bias=logit_bias,)

create_chat_completion(messages,functions=None,function_call=None,tools=None,tool_choice=None,temperature=0.2,top_p=0.95,top_k=40,min_p=0.05,typical_p=1.0,stream=False,stop=[],seed=None,response_format=None,max_tokens=None,presence_penalty=0.0,frequency_penalty=0.0,repeat_penalty=1.0,tfs_z=1.0,mirostat_mode=0,mirostat_tau=5.0,mirostat_eta=0.1,model=None,logits_processor=None,grammar=None,logit_bias=None,logprobs=None,top_logprobs=None)

Generate a chat completion from a list of messages.

Parameters:

  • messages (List[ChatCompletionRequestMessage]) –

    A list of messages to generate a response for.

  • functions (Optional[List[ChatCompletionFunction]], default:None) –

    A list of functions to use for the chat completion.

  • function_call (Optional[ChatCompletionRequestFunctionCall], default:None) –

    A function call to use for the chat completion.

  • tools (Optional[List[ChatCompletionTool]], default:None) –

    A list of tools to use for the chat completion.

  • tool_choice (Optional[ChatCompletionToolChoiceOption], default:None) –

    A tool choice to use for the chat completion.

  • temperature (float, default:0.2) –

    The temperature to use for sampling.

  • top_p (float, default:0.95) –

    The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751

  • top_k (int, default:40) –

    The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration"https://arxiv.org/abs/1904.09751

  • min_p (float, default:0.05) –

    The min-p value to use for minimum p sampling. Minimum P sampling as described inhttps://github.com/ggerganov/llama.cpp/pull/3841

  • typical_p (float, default:1.0) –

    The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paperhttps://arxiv.org/abs/2202.00666.

  • stream (bool, default:False) –

    Whether to stream the results.

  • stop (Optional[Union[str,List[str]]], default:[]) –

    A list of strings to stop generation when encountered.

  • seed (Optional[int], default:None) –

    The seed to use for sampling.

  • response_format (Optional[ChatCompletionRequestResponseFormat], default:None) –

    The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json.

  • max_tokens (Optional[int], default:None) –

    The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.

  • presence_penalty (float, default:0.0) –

    The penalty to apply to tokens based on their presence in the prompt.

  • frequency_penalty (float, default:0.0) –

    The penalty to apply to tokens based on their frequency in the prompt.

  • repeat_penalty (float, default:1.0) –

    The penalty to apply to repeated tokens.

  • tfs_z (float, default:1.0) –

    The tail-free sampling parameter.

  • mirostat_mode (int, default:0) –

    The mirostat sampling mode.

  • mirostat_tau (float, default:5.0) –

    The mirostat sampling tau parameter.

  • mirostat_eta (float, default:0.1) –

    The mirostat sampling eta parameter.

  • model (Optional[str], default:None) –

    The name to use for the model in the completion object.

  • logits_processor (Optional[LogitsProcessorList], default:None) –

    A list of logits processors to use.

  • grammar (Optional[LlamaGrammar], default:None) –

    A grammar to use.

  • logit_bias (Optional[Dict[int,float]], default:None) –

    A logit bias to use.

Returns:

Source code inllama_cpp/llama.py
defcreate_chat_completion(self,messages:List[ChatCompletionRequestMessage],functions:Optional[List[ChatCompletionFunction]]=None,function_call:Optional[ChatCompletionRequestFunctionCall]=None,tools:Optional[List[ChatCompletionTool]]=None,tool_choice:Optional[ChatCompletionToolChoiceOption]=None,temperature:float=0.2,top_p:float=0.95,top_k:int=40,min_p:float=0.05,typical_p:float=1.0,stream:bool=False,stop:Optional[Union[str,List[str]]]=[],seed:Optional[int]=None,response_format:Optional[ChatCompletionRequestResponseFormat]=None,max_tokens:Optional[int]=None,presence_penalty:float=0.0,frequency_penalty:float=0.0,repeat_penalty:float=1.0,tfs_z:float=1.0,mirostat_mode:int=0,mirostat_tau:float=5.0,mirostat_eta:float=0.1,model:Optional[str]=None,logits_processor:Optional[LogitsProcessorList]=None,grammar:Optional[LlamaGrammar]=None,logit_bias:Optional[Dict[int,float]]=None,logprobs:Optional[bool]=None,top_logprobs:Optional[int]=None,)->Union[CreateChatCompletionResponse,Iterator[CreateChatCompletionStreamResponse]]:"""Generate a chat completion from a list of messages.    Args:        messages: A list of messages to generate a response for.        functions: A list of functions to use for the chat completion.        function_call: A function call to use for the chat completion.        tools: A list of tools to use for the chat completion.        tool_choice: A tool choice to use for the chat completion.        temperature: The temperature to use for sampling.        top_p: The top-p value to use for nucleus sampling. Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751        top_k: The top-k value to use for sampling. Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751        min_p: The min-p value to use for minimum p sampling. Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841        typical_p: The typical-p value to use for sampling. Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.        stream: Whether to stream the results.        stop: A list of strings to stop generation when encountered.        seed: The seed to use for sampling.        response_format: The response format to use for the chat completion. Use { "type": "json_object" } to contstrain output to only valid json.        max_tokens: The maximum number of tokens to generate. If max_tokens <= 0 or None, the maximum number of tokens to generate is unlimited and depends on n_ctx.        presence_penalty: The penalty to apply to tokens based on their presence in the prompt.        frequency_penalty: The penalty to apply to tokens based on their frequency in the prompt.        repeat_penalty: The penalty to apply to repeated tokens.        tfs_z: The tail-free sampling parameter.        mirostat_mode: The mirostat sampling mode.        mirostat_tau: The mirostat sampling tau parameter.        mirostat_eta: The mirostat sampling eta parameter.        model: The name to use for the model in the completion object.        logits_processor: A list of logits processors to use.        grammar: A grammar to use.        logit_bias: A logit bias to use.    Returns:        Generated chat completion or a stream of chat completion chunks.    """handler=(self.chat_handlerorself._chat_handlers.get(self.chat_format)orllama_chat_format.get_chat_completion_handler(self.chat_format))returnhandler(llama=self,messages=messages,functions=functions,function_call=function_call,tools=tools,tool_choice=tool_choice,temperature=temperature,top_p=top_p,top_k=top_k,min_p=min_p,typical_p=typical_p,logprobs=logprobs,top_logprobs=top_logprobs,stream=stream,stop=stop,seed=seed,response_format=response_format,max_tokens=max_tokens,presence_penalty=presence_penalty,frequency_penalty=frequency_penalty,repeat_penalty=repeat_penalty,tfs_z=tfs_z,mirostat_mode=mirostat_mode,mirostat_tau=mirostat_tau,mirostat_eta=mirostat_eta,model=model,logits_processor=logits_processor,grammar=grammar,logit_bias=logit_bias,)

create_chat_completion_openai_v1(*args,**kwargs)

Generate a chat completion with return type based on the the OpenAI v1 API.

OpenAI python package is required to use this method.

You can install it withpip install openai.

Parameters:

  • *args (Any, default:()) –

    Positional arguments to pass to create_chat_completion.

  • **kwargs (Any, default:{}) –

    Keyword arguments to pass to create_chat_completion.

Returns:

  • Generated chat completion or a stream of chat completion chunks.

Source code inllama_cpp/llama.py
defcreate_chat_completion_openai_v1(self,*args:Any,**kwargs:Any,):"""Generate a chat completion with return type based on the the OpenAI v1 API.    OpenAI python package is required to use this method.    You can install it with `pip install openai`.    Args:        *args: Positional arguments to pass to create_chat_completion.        **kwargs: Keyword arguments to pass to create_chat_completion.    Returns:        Generated chat completion or a stream of chat completion chunks.    """try:fromopenai.types.chatimportChatCompletion,ChatCompletionChunkstream=kwargs.get("stream",False)# type: ignoreassertisinstance(stream,bool)ifstream:return(ChatCompletionChunk(**chunk)forchunkinself.create_chat_completion(*args,**kwargs))# type: ignoreelse:returnChatCompletion(**self.create_chat_completion(*args,**kwargs))# type: ignoreexceptImportError:raiseImportError("To use create_chat_completion_openai_v1, you must install the openai package.""You can install it with `pip install openai`.")

set_cache(cache)

Set the cache.

Parameters:

  • cache (Optional[BaseLlamaCache]) –

    The cache to set.

Source code inllama_cpp/llama.py
defset_cache(self,cache:Optional[BaseLlamaCache]):"""Set the cache.    Args:        cache: The cache to set.    """self.cache=cache

save_state()

Source code inllama_cpp/llama.py
defsave_state(self)->LlamaState:ifself.verbose:print("Llama.save_state: saving llama state",file=sys.stderr)state_size=llama_cpp.llama_get_state_size(self._ctx.ctx)ifself.verbose:print(f"Llama.save_state: got state size:{state_size}",file=sys.stderr)llama_state=(ctypes.c_uint8*int(state_size))()ifself.verbose:print("Llama.save_state: allocated state",file=sys.stderr)n_bytes=llama_cpp.llama_copy_state_data(self._ctx.ctx,llama_state)ifself.verbose:print(f"Llama.save_state: copied llama state:{n_bytes}",file=sys.stderr)ifint(n_bytes)>int(state_size):raiseRuntimeError("Failed to copy llama state data")llama_state_compact=(ctypes.c_uint8*int(n_bytes))()llama_cpp.ctypes.memmove(llama_state_compact,llama_state,int(n_bytes))ifself.verbose:print(f"Llama.save_state: saving{n_bytes} bytes of llama state",file=sys.stderr,)returnLlamaState(scores=self._scores.copy(),input_ids=self.input_ids.copy(),n_tokens=self.n_tokens,llama_state=bytes(llama_state_compact),llama_state_size=n_bytes,seed=self._seed,)

load_state(state)

Source code inllama_cpp/llama.py
defload_state(self,state:LlamaState)->None:# Only filling in up to `n_tokens` and then zero-ing out the restself.scores[:state.n_tokens,:]=state.scores.copy()rest=self.scores[state.n_tokens:,:]rest[rest>0]=0.0self.input_ids=state.input_ids.copy()self.n_tokens=state.n_tokensself._seed=state.seedstate_size=state.llama_state_sizeLLamaStateArrayType=ctypes.c_uint8*state_sizellama_state=LLamaStateArrayType.from_buffer_copy(state.llama_state)ifllama_cpp.llama_set_state_data(self._ctx.ctx,llama_state)!=state_size:raiseRuntimeError("Failed to set llama state data")

token_bos()

Return the beginning-of-sequence token.

Source code inllama_cpp/llama.py
deftoken_bos(self)->int:"""Return the beginning-of-sequence token."""returnself._model.token_bos()

token_eos()

Return the end-of-sequence token.

Source code inllama_cpp/llama.py
deftoken_eos(self)->int:"""Return the end-of-sequence token."""returnself._model.token_eos()

from_pretrained(repo_id,filename,additional_files=None,local_dir=None,local_dir_use_symlinks='auto',cache_dir=None,**kwargs)classmethod

Create a Llama model from a pretrained model name or path.This method requires the huggingface-hub package.You can install it withpip install huggingface-hub.

Parameters:

  • repo_id (str) –

    The model repo id.

  • filename (Optional[str]) –

    A filename or glob pattern to match the model file in the repo.

  • additional_files (Optional[List], default:None) –

    A list of filenames or glob patterns to match additional model files in the repo.

  • local_dir (Optional[Union[str,PathLike[str]]], default:None) –

    The local directory to save the model to.

  • local_dir_use_symlinks (Union[bool,Literal['auto']], default:'auto') –

    Whether to use symlinks when downloading the model.

  • **kwargs (Any, default:{}) –

    Additional keyword arguments to pass to the Llama constructor.

Returns:

  • 'Llama'

    A Llama model.

Source code inllama_cpp/llama.py
@classmethoddeffrom_pretrained(cls,repo_id:str,filename:Optional[str],additional_files:Optional[List]=None,local_dir:Optional[Union[str,os.PathLike[str]]]=None,local_dir_use_symlinks:Union[bool,Literal["auto"]]="auto",cache_dir:Optional[Union[str,os.PathLike[str]]]=None,**kwargs:Any,)->"Llama":"""Create a Llama model from a pretrained model name or path.    This method requires the huggingface-hub package.    You can install it with `pip install huggingface-hub`.    Args:        repo_id: The model repo id.        filename: A filename or glob pattern to match the model file in the repo.        additional_files: A list of filenames or glob patterns to match additional model files in the repo.        local_dir: The local directory to save the model to.        local_dir_use_symlinks: Whether to use symlinks when downloading the model.        **kwargs: Additional keyword arguments to pass to the Llama constructor.    Returns:        A Llama model."""try:fromhuggingface_hubimporthf_hub_download,HfFileSystemfromhuggingface_hub.utilsimportvalidate_repo_idexceptImportError:raiseImportError("Llama.from_pretrained requires the huggingface-hub package. ""You can install it with `pip install huggingface-hub`.")validate_repo_id(repo_id)hffs=HfFileSystem()files=[file["name"]ifisinstance(file,dict)elsefileforfileinhffs.ls(repo_id,recursive=True)]# split each file into repo_id, subfolder, filenamefile_list:List[str]=[]forfileinfiles:rel_path=Path(file).relative_to(repo_id)file_list.append(str(rel_path))# find the only/first shard file:matching_files=[fileforfileinfile_listiffnmatch.fnmatch(file,filename)]# type: ignoreiflen(matching_files)==0:raiseValueError(f"No file found in{repo_id} that match{filename}\n\n"f"Available Files:\n{json.dumps(file_list)}")iflen(matching_files)>1:raiseValueError(f"Multiple files found in{repo_id} matching{filename}\n\n"f"Available Files:\n{json.dumps(files)}")(matching_file,)=matching_filessubfolder=str(Path(matching_file).parent)filename=Path(matching_file).name# download the filehf_hub_download(repo_id=repo_id,filename=filename,subfolder=subfolder,local_dir=local_dir,local_dir_use_symlinks=local_dir_use_symlinks,cache_dir=cache_dir,)ifadditional_files:foradditonal_file_nameinadditional_files:# find the additional shard file:matching_additional_files=[fileforfileinfile_listiffnmatch.fnmatch(file,additonal_file_name)]iflen(matching_additional_files)==0:raiseValueError(f"No file found in{repo_id} that match{additonal_file_name}\n\n"f"Available Files:\n{json.dumps(file_list)}")iflen(matching_additional_files)>1:raiseValueError(f"Multiple files found in{repo_id} matching{additonal_file_name}\n\n"f"Available Files:\n{json.dumps(files)}")(matching_additional_file,)=matching_additional_files# download the additional filehf_hub_download(repo_id=repo_id,filename=matching_additional_file,subfolder=subfolder,local_dir=local_dir,local_dir_use_symlinks=local_dir_use_symlinks,cache_dir=cache_dir,)iflocal_dirisNone:model_path=hf_hub_download(repo_id=repo_id,filename=filename,subfolder=subfolder,local_dir=local_dir,local_dir_use_symlinks=local_dir_use_symlinks,cache_dir=cache_dir,local_files_only=True,)else:model_path=os.path.join(local_dir,filename)# loading the first file of a sharded GGUF loads all remaining shard files in the subfolderreturncls(model_path=model_path,**kwargs,)

llama_cpp.LlamaGrammar

Source code inllama_cpp/llama_grammar.py
classLlamaGrammar:def__init__(self,*args,_grammar:str,**kwargs):self._grammar=_grammarself._root=LLAMA_GRAMMAR_DEFAULT_ROOT@classmethoddeffrom_string(cls,grammar:str,verbose:bool=True)->"LlamaGrammar":returncls(_grammar=grammar)@classmethoddeffrom_file(cls,file:Union[str,Path],verbose:bool=True)->"LlamaGrammar":try:withopen(file)asf:grammar=f.read()exceptExceptionaserr:raiseException(f"{cls.from_file.__name__}: error reading grammar file:{err}")ifgrammar:returncls.from_string(grammar,verbose=verbose)raiseValueError(f"{cls.from_file.__name__}: error parsing grammar file: params_grammer is empty")@classmethoddeffrom_json_schema(cls,json_schema:str,verbose:bool=True)->"LlamaGrammar":returncls.from_string(json_schema_to_gbnf(json_schema),verbose=verbose)

from_string(grammar,verbose=True)classmethod

Source code inllama_cpp/llama_grammar.py
@classmethoddeffrom_string(cls,grammar:str,verbose:bool=True)->"LlamaGrammar":returncls(_grammar=grammar)

from_json_schema(json_schema,verbose=True)classmethod

Source code inllama_cpp/llama_grammar.py
@classmethoddeffrom_json_schema(cls,json_schema:str,verbose:bool=True)->"LlamaGrammar":returncls.from_string(json_schema_to_gbnf(json_schema),verbose=verbose)

llama_cpp.LlamaCache=LlamaRAMCachemodule-attribute

llama_cpp.LlamaState

Source code inllama_cpp/llama.py
classLlamaState:def__init__(self,input_ids:npt.NDArray[np.intc],scores:npt.NDArray[np.single],n_tokens:int,llama_state:bytes,llama_state_size:int,seed:int,):self.input_ids=input_idsself.scores=scoresself.n_tokens=n_tokensself.llama_state=llama_stateself.llama_state_size=llama_state_sizeself.seed=seed

llama_cpp.LogitsProcessor=Callable[[npt.NDArray[np.intc],npt.NDArray[np.single]],npt.NDArray[np.single]]module-attribute

llama_cpp.LogitsProcessorList

Bases:List[LogitsProcessor]

Source code inllama_cpp/llama.py
classLogitsProcessorList(List[LogitsProcessor]):def__call__(self,input_ids:npt.NDArray[np.intc],scores:npt.NDArray[np.single])->npt.NDArray[np.single]:forprocessorinself:scores=processor(input_ids,scores)returnscores

llama_cpp.StoppingCriteria=Callable[[npt.NDArray[np.intc],npt.NDArray[np.single]],bool]module-attribute

llama_cpp.StoppingCriteriaList

Bases:List[StoppingCriteria]

Source code inllama_cpp/llama.py
classStoppingCriteriaList(List[StoppingCriteria]):def__call__(self,input_ids:npt.NDArray[np.intc],logits:npt.NDArray[np.single])->bool:returnany([stopping_criteria(input_ids,logits)forstopping_criteriainself])

Low Level API

Low-level Python bindings for llama.cpp using Python's ctypes library.

llama_cpp.llama_cpp

llama_vocab_p=NewType('llama_vocab_p',int)module-attribute

llama_vocab_p_ctypes=ctypes.c_void_pmodule-attribute

llama_model_p=NewType('llama_model_p',int)module-attribute

llama_model_p_ctypes=ctypes.c_void_pmodule-attribute

llama_context_p=NewType('llama_context_p',int)module-attribute

llama_context_p_ctypes=ctypes.c_void_pmodule-attribute

llama_memory_t=NewType('llama_memory_t',int)module-attribute

llama_memory_t_ctypes=ctypes.c_void_pmodule-attribute

llama_kv_cache_p=NewType('llama_kv_cache_p',int)module-attribute

llama_kv_cache_p_ctypes=ctypes.c_void_pmodule-attribute

llama_pos=ctypes.c_int32module-attribute

llama_token=ctypes.c_int32module-attribute

llama_token_p=ctypes.POINTER(llama_token)module-attribute

llama_seq_id=ctypes.c_int32module-attribute

llama_token_data

Bases:Structure

Used to store token data

Attributes:

Source code inllama_cpp/llama_cpp.py
classllama_token_data(ctypes.Structure):"""Used to store token data    Attributes:        id (llama_token): token id        logit (float): log-odds of the token        p (float): probability of the token"""ifTYPE_CHECKING:id:llama_tokenlogit:floatp:float_fields_=[("id",llama_token),("logit",ctypes.c_float),("p",ctypes.c_float),]

llama_token_data_p=ctypes.POINTER(llama_token_data)module-attribute

llama_token_data_array

Bases:Structure

Used to sample tokens given logits

Attributes:

  • data (Array[llama_token_data]) –

    token data

  • size (int) –

    size of the array

  • selected (int) –

    index in the data array (i.e. not the token id)

  • sorted (bool) –

    whether the array is sorted

Source code inllama_cpp/llama_cpp.py
classllama_token_data_array(ctypes.Structure):"""Used to sample tokens given logits    Attributes:        data (ctypes.Array[llama_token_data]): token data        size (int): size of the array        selected (int): index in the data array (i.e. not the token id)        sorted (bool): whether the array is sorted"""ifTYPE_CHECKING:data:CtypesArray[llama_token_data]size:intselected:intsorted:bool_fields_=[("data",llama_token_data_p),("size",ctypes.c_size_t),("selected",ctypes.c_int64),("sorted",ctypes.c_bool),]

llama_token_data_array_p=ctypes.POINTER(llama_token_data_array)module-attribute

llama_progress_callback=ctypes.CFUNCTYPE(ctypes.c_bool,ctypes.c_float,ctypes.c_void_p)module-attribute

llama_batch

Bases:Structure

Input data for llama_encode/llama_decode

A llama_batch object can contain input about one or many sequences

The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens

Attributes:

  • n_tokens (int) –

    number of tokens

  • token (Array[llama_token]) –

    the token ids of the input (used when embd is NULL)

  • embd (Array[c_float]) –

    token embeddings (i.e. float vector of size n_embd) (used when token is NULL)

  • pos (Array[Array[llama_pos]]) –

    the positions of the respective token in the sequence

  • seq_id (Array[Array[llama_seq_id]]) –

    the sequence to which the respective token belongs

  • logits (Array[c_int8]) –

    if zero, the logits for the respective token will not be output

Source code inllama_cpp/llama_cpp.py
classllama_batch(ctypes.Structure):"""Input data for llama_encode/llama_decode    A llama_batch object can contain input about one or many sequences    The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens    Attributes:        n_tokens (int): number of tokens        token (ctypes.Array[llama_token]): the token ids of the input (used when embd is NULL)        embd (ctypes.Array[ctypes.ctypes.c_float]): token embeddings (i.e. float vector of size n_embd) (used when token is NULL)        pos (ctypes.Array[ctypes.Array[llama_pos]]): the positions of the respective token in the sequence        seq_id (ctypes.Array[ctypes.Array[llama_seq_id]]): the sequence to which the respective token belongs        logits (ctypes.Array[ctypes.ctypes.c_int8]): if zero, the logits for the respective token will not be output    """ifTYPE_CHECKING:n_tokens:inttoken:CtypesArray[llama_token]embd:CtypesArray[ctypes.c_float]pos:CtypesArray[CtypesArray[llama_pos]]n_seq_id:CtypesArray[ctypes.c_int]seq_id:CtypesArray[CtypesArray[llama_seq_id]]logits:CtypesArray[ctypes.c_int8]_fields_=[("n_tokens",ctypes.c_int32),("token",ctypes.POINTER(llama_token)),("embd",ctypes.POINTER(ctypes.c_float)),("pos",ctypes.POINTER(llama_pos)),("n_seq_id",ctypes.POINTER(ctypes.c_int32)),("seq_id",ctypes.POINTER(ctypes.POINTER(llama_seq_id))),("logits",ctypes.POINTER(ctypes.c_int8)),]

llama_model_kv_override_value

Bases:Union

Source code inllama_cpp/llama_cpp.py
classllama_model_kv_override_value(ctypes.Union):_fields_=[("val_i64",ctypes.c_int64),("val_f64",ctypes.c_double),("val_bool",ctypes.c_bool),("val_str",ctypes.c_char*128),]ifTYPE_CHECKING:val_i64:intval_f64:floatval_bool:boolval_str:bytes

llama_model_kv_override

Bases:Structure

Source code inllama_cpp/llama_cpp.py
classllama_model_kv_override(ctypes.Structure):_fields_=[("tag",ctypes.c_int),("key",ctypes.c_char*128),("value",llama_model_kv_override_value),]ifTYPE_CHECKING:tag:intkey:bytesvalue:Union[int,float,bool,bytes]

llama_model_params

Bases:Structure

Parameters for llama_model

Attributes:

  • devices (Array[ggml_backend_dev_t]) –

    NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)

  • tensor_buft_overrides (Array[llama_model_tensor_buft_override]) –

    NULL-terminated list of buffer types to use for tensors that match a pattern

  • n_gpu_layers (int) –

    number of layers to store in VRAM

  • split_mode (int) –

    how to split the model across multiple GPUs

  • main_gpu (int) –

    the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE

  • tensor_split (Array[c_float]) –

    proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()

  • progress_callback (llama_progress_callback) –

    called with a progress value between 0.0 and 1.0. Pass NULL to disable. If the provided progress_callback returns true, model loading continues. If it returns false, model loading is immediately aborted.

  • progress_callback_user_data (c_void_p) –

    context pointer passed to the progress callback

  • kv_overrides (Array[llama_model_kv_override]) –

    override key-value pairs of the model meta data

  • vocab_only (bool) –

    only load the vocabulary, no weights

  • use_mmap (bool) –

    use mmap if possible

  • use_mlock (bool) –

    force system to keep model in RAM

  • check_tensors (bool) –

    validate model tensor data

Source code inllama_cpp/llama_cpp.py
classllama_model_params(ctypes.Structure):"""Parameters for llama_model    Attributes:        devices (ctypes.Array[ggml_backend_dev_t]): NULL-terminated list of devices to use for offloading (if NULL, all available devices are used)        tensor_buft_overrides (ctypes.Array[llama_model_tensor_buft_override]): NULL-terminated list of buffer types to use for tensors that match a pattern        n_gpu_layers (int): number of layers to store in VRAM        split_mode (int): how to split the model across multiple GPUs        main_gpu (int): the GPU that is used for the entire model when split_mode is LLAMA_SPLIT_MODE_NONE        tensor_split (ctypes.Array[ctypes.ctypes.c_float]): proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()        progress_callback (llama_progress_callback): called with a progress value between 0.0 and 1.0. Pass NULL to disable. If the provided progress_callback returns true, model loading continues. If it returns false, model loading is immediately aborted.        progress_callback_user_data (ctypes.ctypes.c_void_p): context pointer passed to the progress callback        kv_overrides (ctypes.Array[llama_model_kv_override]): override key-value pairs of the model meta data        vocab_only (bool): only load the vocabulary, no weights        use_mmap (bool): use mmap if possible        use_mlock (bool): force system to keep model in RAM        check_tensors (bool): validate model tensor data"""ifTYPE_CHECKING:devices:CtypesArray[ctypes.c_void_p]# NOTE: unusedtensor_buft_overrides:CtypesArray[llama_model_tensor_buft_override]# NOTE: unusedn_gpu_layers:intsplit_mode:intmain_gpu:inttensor_split:CtypesArray[ctypes.c_float]progress_callback:Callable[[float,ctypes.c_void_p],bool]progress_callback_user_data:ctypes.c_void_pkv_overrides:CtypesArray[llama_model_kv_override]vocab_only:booluse_mmap:booluse_mlock:boolcheck_tensors:bool_fields_=[("devices",ctypes.c_void_p),# NOTE: unnused("tensor_buft_overrides",ctypes.c_void_p),# NOTE: unused("n_gpu_layers",ctypes.c_int32),("split_mode",ctypes.c_int),("main_gpu",ctypes.c_int32),("tensor_split",ctypes.POINTER(ctypes.c_float)),("progress_callback",llama_progress_callback),("progress_callback_user_data",ctypes.c_void_p),("kv_overrides",ctypes.POINTER(llama_model_kv_override)),("vocab_only",ctypes.c_bool),("use_mmap",ctypes.c_bool),("use_mlock",ctypes.c_bool),("check_tensors",ctypes.c_bool),]

llama_context_params

Bases:Structure

Parameters for llama_context

Attributes:

  • n_ctx (int) –

    text context, 0 = from model

  • n_batch (int) –

    logical maximum batch size that can be submitted to llama_decode

  • n_ubatch (int) –

    physical maximum batch size

  • n_seq_max (int) –

    max number of sequences (i.e. distinct states for recurrent models)

  • n_threads (int) –

    number of threads to use for generation

  • n_threads_batch (int) –

    number of threads to use for batch processing

  • rope_scaling_type (int) –

    RoPE scaling type, fromenum llama_rope_scaling_type

  • pooling_type (int) –

    whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)

  • attention_type (int) –

    attention type to use for embeddings

  • rope_freq_base (float) –

    RoPE base frequency, 0 = from model

  • rope_freq_scale (float) –

    RoPE frequency scaling factor, 0 = from model

  • yarn_ext_factor (float) –

    YaRN extrapolation mix factor, negative = from model

  • yarn_attn_factor (float) –

    YaRN magnitude scaling factor

  • yarn_beta_fast (float) –

    YaRN low correction dim

  • yarn_beta_slow (float) –

    YaRN high correction dim

  • yarn_orig_ctx (int) –

    YaRN original context size

  • defrag_thold (float) –

    defragment the KV cache if holes/size > thold, <= 0 disabled (default)

  • cb_eval (ggml_backend_sched_eval_callback) –

    callback for scheduling eval

  • cb_eval_user_data (c_void_p) –

    user data for cb_eval

  • type_k (int) –

    data type for K cache

  • type_v (int) –

    data type for V cache

  • abort_callback (ggml_abort_callback) –

    abort callback if it returns true, execution of llama_decode() will be aborted

  • abort_callback_data (c_void_p) –

    data for abort_callback

  • embeddings (bool) –

    if true, extract embeddings (together with logits)

  • offload_kqv (bool) –

    whether to offload the KQV ops (including the KV cache) to GPU

  • flash_attn (bool) –

    whether to use flash attention

  • no_perf (bool) –

    whether to measure performance timings

  • op_offload (bool) –

    offload host tensor operations to device

  • swa_full (bool) –

    use full-size SWA cache

Source code inllama_cpp/llama_cpp.py
classllama_context_params(ctypes.Structure):"""Parameters for llama_context    Attributes:        n_ctx (int): text context, 0 = from model        n_batch (int): logical maximum batch size that can be submitted to llama_decode        n_ubatch (int): physical maximum batch size        n_seq_max (int): max number of sequences (i.e. distinct states for recurrent models)        n_threads (int): number of threads to use for generation        n_threads_batch (int): number of threads to use for batch processing        rope_scaling_type (int): RoPE scaling type, from `enum llama_rope_scaling_type`        pooling_type (int): whether to pool (sum) embedding results by sequence id (ignored if no pooling layer)        attention_type (int): attention type to use for embeddings        rope_freq_base (float): RoPE base frequency, 0 = from model        rope_freq_scale (float): RoPE frequency scaling factor, 0 = from model        yarn_ext_factor (float): YaRN extrapolation mix factor, negative = from model        yarn_attn_factor (float): YaRN magnitude scaling factor        yarn_beta_fast (float): YaRN low correction dim        yarn_beta_slow (float): YaRN high correction dim        yarn_orig_ctx (int): YaRN original context size        defrag_thold (float): defragment the KV cache if holes/size > thold, <= 0 disabled (default)        cb_eval (ggml_backend_sched_eval_callback): callback for scheduling eval        cb_eval_user_data (ctypes.ctypes.c_void_p): user data for cb_eval        type_k (int): data type for K cache        type_v (int): data type for V cache        abort_callback (ggml_abort_callback): abort callback if it returns true, execution of llama_decode() will be aborted        abort_callback_data (ctypes.ctypes.c_void_p): data for abort_callback        embeddings (bool): if true, extract embeddings (together with logits)        offload_kqv (bool): whether to offload the KQV ops (including the KV cache) to GPU        flash_attn (bool): whether to use flash attention        no_perf (bool): whether to measure performance timings        op_offload (bool): offload host tensor operations to device        swa_full (bool): use full-size SWA cache    """ifTYPE_CHECKING:n_ctx:intn_batch:intn_ubatch:intn_seq_max:intn_threads:intn_threads_batch:intrope_scaling_type:intpooling_type:intattention_type:intrope_freq_base:floatrope_freq_scale:floatyarn_ext_factor:floatyarn_attn_factor:floatyarn_beta_fast:floatyarn_beta_slow:floatyarn_orig_ctx:intdefrag_thold:floatcb_eval:Callable[[ctypes.c_void_p,bool],bool]cb_eval_user_data:ctypes.c_void_ptype_k:inttype_v:intabort_callback:Callable[[ctypes.c_void_p],bool]abort_callback_data:ctypes.c_void_pembeddings:booloffload_kqv:boolflash_attn:boolno_perf:boolop_offload:boolswa_full:bool_fields_=[("n_ctx",ctypes.c_uint32),("n_batch",ctypes.c_uint32),("n_ubatch",ctypes.c_uint32),("n_seq_max",ctypes.c_uint32),("n_threads",ctypes.c_int32),("n_threads_batch",ctypes.c_int32),("rope_scaling_type",ctypes.c_int),("pooling_type",ctypes.c_int),("attention_type",ctypes.c_int),("rope_freq_base",ctypes.c_float),("rope_freq_scale",ctypes.c_float),("yarn_ext_factor",ctypes.c_float),("yarn_attn_factor",ctypes.c_float),("yarn_beta_fast",ctypes.c_float),("yarn_beta_slow",ctypes.c_float),("yarn_orig_ctx",ctypes.c_uint32),("defrag_thold",ctypes.c_float),("cb_eval",ggml_backend_sched_eval_callback),("cb_eval_user_data",ctypes.c_void_p),("type_k",ctypes.c_int),("type_v",ctypes.c_int),("abort_callback",ggml_abort_callback),("abort_callback_data",ctypes.c_void_p),("embeddings",ctypes.c_bool),("offload_kqv",ctypes.c_bool),("flash_attn",ctypes.c_bool),("no_perf",ctypes.c_bool),("op_offload",ctypes.c_bool),("swa_full",ctypes.c_bool),]

llama_log_callback=ctypes.CFUNCTYPE(None,ctypes.c_int,ctypes.c_char_p,ctypes.c_void_p)module-attribute

Signature for logging eventsNote that text includes the new line character at the end for most events.If your logging mechanism cannot handle that, check if the last character is '' and strip itif it exists.It might not exist for progress report where '.' is output repeatedly.

llama_model_quantize_params

Bases:Structure

Parameters for llama_model_quantize

Attributes:

  • nthread (int) –

    number of threads to use for quantizing, if <=0 will use std:🧵:hardware_concurrency()

  • ftype (int) –

    quantize to this llama_ftype

  • output_tensor_type (int) –

    output tensor type

  • token_embedding_type (int) –

    token embeddings tensor type

  • allow_requantize (bool) –

    allow quantizing non-f32/f16 tensors

  • quantize_output_tensor (bool) –

    quantize output.weight

  • only_copy (bool) –

    only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored

  • pure (bool) –

    quantize all tensors to the default type

  • keep_split (bool) –

    quantize to the same number of shards

  • imatrix (c_void_p) –

    pointer to importance matrix data

  • kv_overrides (c_void_p) –

    pointer to vector containing overrides

  • tensor_types (c_void_p) –

    pointer to vector containing tensor types

  • prune_layers (c_void_p) –

    pointer to vector containing layer indices to prune

Source code inllama_cpp/llama_cpp.py
classllama_model_quantize_params(ctypes.Structure):"""Parameters for llama_model_quantize    Attributes:        nthread (int): number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()        ftype (int): quantize to this llama_ftype        output_tensor_type (int): output tensor type        token_embedding_type (int): token embeddings tensor type        allow_requantize (bool): allow quantizing non-f32/f16 tensors        quantize_output_tensor (bool): quantize output.weight        only_copy (bool): only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored        pure (bool): quantize all tensors to the default type        keep_split (bool): quantize to the same number of shards        imatrix (ctypes.c_void_p): pointer to importance matrix data        kv_overrides (ctypes.c_void_p): pointer to vector containing overrides        tensor_types (ctypes.c_void_p): pointer to vector containing tensor types        prune_layers (ctypes.c_void_p): pointer to vector containing layer indices to prune    """ifTYPE_CHECKING:nthread:intftype:intoutput_tensor_type:inttoken_embedding_type:intallow_requantize:boolquantize_output_tensor:boolonly_copy:boolpure:boolkeep_split:boolimatrix:ctypes.c_void_pkv_overrides:ctypes.c_void_ptensor_types:ctypes.c_void_pprune_layers:ctypes.c_void_p_fields_=[("nthread",ctypes.c_int32),("ftype",ctypes.c_int),("output_tensor_type",ctypes.c_int),("token_embedding_type",ctypes.c_int),("allow_requantize",ctypes.c_bool),("quantize_output_tensor",ctypes.c_bool),("only_copy",ctypes.c_bool),("pure",ctypes.c_bool),("keep_split",ctypes.c_bool),("imatrix",ctypes.c_void_p),("kv_overrides",ctypes.c_void_p),("tensor_types",ctypes.c_void_p),("prune_layers",ctypes.c_void_p),]

llama_logit_bias

Bases:Structure

Used to store logit bias

Attributes:

Source code inllama_cpp/llama_cpp.py
classllama_logit_bias(ctypes.Structure):"""Used to store logit bias    Attributes:        token (llama_token): token id        bias (float): bias"""ifTYPE_CHECKING:token:llama_tokenbias:float_fields_=[("token",llama_token),("bias",ctypes.c_float),]

llama_logit_bias_p=ctypes.POINTER(llama_logit_bias)module-attribute

llama_sampler_chain_params

Bases:Structure

Parameters for llama_sampler_chain

Attributes:

  • no_perf (bool) –

    whether to measure performance timings

Source code inllama_cpp/llama_cpp.py
classllama_sampler_chain_params(ctypes.Structure):"""Parameters for llama_sampler_chain    Attributes:        no_perf (bool): whether to measure performance timings"""ifTYPE_CHECKING:no_perf:bool_fields_=[("no_perf",ctypes.c_bool),]

llama_chat_message

Bases:Structure

Source code inllama_cpp/llama_cpp.py
classllama_chat_message(ctypes.Structure):_fields_=[("role",ctypes.c_char_p),("content",ctypes.c_char_p),]

llama_adapter_lora_p=ctypes.c_void_pmodule-attribute

llama_adapter_lora_p_ctypes=ctypes.POINTER(ctypes.c_void_p)module-attribute

llama_model_default_params()

Get default parameters for llama_model

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_default_params",[],llama_model_params,)defllama_model_default_params()->llama_model_params:"""Get default parameters for llama_model"""...

llama_context_default_params()

Get default parameters for llama_context

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_context_default_params",[],llama_context_params,)defllama_context_default_params()->llama_context_params:"""Get default parameters for llama_context"""...

llama_sampler_chain_default_params()

Get default parameters for llama_sampler_chain

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_chain_default_params",[],llama_sampler_chain_params,)defllama_sampler_chain_default_params()->llama_sampler_chain_params:"""Get default parameters for llama_sampler_chain"""...

llama_model_quantize_default_params()

Get default parameters for llama_model_quantize

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_quantize_default_params",[],llama_model_quantize_params,)defllama_model_quantize_default_params()->llama_model_quantize_params:"""Get default parameters for llama_model_quantize"""...

llama_backend_init()

Initialize the llama + ggml backendCall once at the start of the program

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_backend_init",[],None,)defllama_backend_init():"""Initialize the llama + ggml backend    Call once at the start of the program"""...

llama_backend_free()

Call once at the end of the program - currently only used for MPI

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_backend_free",[],None,)defllama_backend_free():"""Call once at the end of the program - currently only used for MPI"""...

llama_numa_init(numa)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_numa_init",[ctypes.c_int],None,)defllama_numa_init(numa:int,/):...

llama_load_model_from_file(path_model,params)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_load_model_from_file",[ctypes.c_char_p,llama_model_params],llama_model_p_ctypes,)defllama_load_model_from_file(path_model:bytes,params:llama_model_params,/)->Optional[llama_model_p]:...

llama_model_load_from_file(path_model,params)

Load the model from a file

If the file is split into multiple parts, the file name must follow this pattern:-%05d-of-%05d.gguf

If the split file name does not follow this pattern, use llama_model_load_from_splits

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_load_from_file",[ctypes.c_char_p,llama_model_params],llama_model_p_ctypes,)defllama_model_load_from_file(path_model:bytes,params:llama_model_params,/)->Optional[llama_model_p]:"""Load the model from a file    If the file is split into multiple parts, the file name must follow this pattern: <name>-%05d-of-%05d.gguf    If the split file name does not follow this pattern, use llama_model_load_from_splits"""...

llama_model_load_from_splits(paths,n_paths,params)

Load the model from multiple splits (support custom naming scheme)

The paths must be in the correct order

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_load_from_splits",[ctypes.POINTER(ctypes.c_char_p),ctypes.c_size_t,llama_model_params],llama_model_p_ctypes,)defllama_model_load_from_splits(paths:List[bytes],n_paths:int,params:llama_model_params,/)->Optional[llama_model_p]:"""Load the model from multiple splits (support custom naming scheme)    The paths must be in the correct order"""...

llama_model_save_to_file(model,path_model)

Save the model to a file

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_save_to_file",[llama_model_p_ctypes,ctypes.c_char_p],None,)defllama_model_save_to_file(model:llama_model_p,path_model:bytes,/):"""Save the model to a file"""...

llama_free_model(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_free_model",[llama_model_p_ctypes],None,)defllama_free_model(model:llama_model_p,/):...

llama_model_free(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_free",[llama_model_p_ctypes],None,)defllama_model_free(model:llama_model_p,/):...

llama_init_from_model(model,params)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_init_from_model",[llama_model_p_ctypes,llama_context_params],llama_context_p_ctypes,)defllama_init_from_model(model:llama_model_p,params:llama_context_params,/)->Optional[llama_context_p]:...

llama_new_context_with_model(model,params)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_new_context_with_model",[llama_model_p_ctypes,llama_context_params],llama_context_p_ctypes,)defllama_new_context_with_model(model:llama_model_p,params:llama_context_params,/)->Optional[llama_context_p]:...

llama_free(ctx)

Frees all allocated memory

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_free",[llama_context_p_ctypes],None,)defllama_free(ctx:llama_context_p,/):"""Frees all allocated memory"""...

llama_time_us()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_time_us",[],ctypes.c_int64,)defllama_time_us()->int:...

llama_max_devices()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_max_devices",[],ctypes.c_size_t)defllama_max_devices()->int:...

llama_max_parallel_sequences()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_max_parallel_sequences",[],ctypes.c_size_t)defllama_max_parallel_sequences()->int:...

llama_supports_mmap()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_supports_mmap",[],ctypes.c_bool)defllama_supports_mmap()->bool:...

llama_supports_mlock()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_supports_mlock",[],ctypes.c_bool)defllama_supports_mlock()->bool:...

llama_supports_gpu_offload()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_supports_gpu_offload",[],ctypes.c_bool)defllama_supports_gpu_offload()->bool:...

llama_supports_rpc()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_supports_rpc",[],ctypes.c_bool)defllama_supports_rpc()->bool:...

llama_n_ctx(ctx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_ctx",[llama_context_p_ctypes],ctypes.c_uint32)defllama_n_ctx(ctx:llama_context_p,/)->int:...

llama_n_batch(ctx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_batch",[llama_context_p_ctypes],ctypes.c_uint32)defllama_n_batch(ctx:llama_context_p,/)->int:...

llama_n_ubatch(ctx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_ubatch",[llama_context_p_ctypes],ctypes.c_uint32)defllama_n_ubatch(ctx:llama_context_p,/)->int:...

llama_n_seq_max(ctx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_seq_max",[llama_context_p_ctypes],ctypes.c_uint32)defllama_n_seq_max(ctx:llama_context_p,/)->int:...

llama_n_ctx_train(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_ctx_train",[llama_model_p_ctypes],ctypes.c_int32)defllama_n_ctx_train(model:llama_model_p,/)->int:...

llama_n_embd(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_embd",[llama_model_p_ctypes],ctypes.c_int32)defllama_n_embd(model:llama_model_p,/)->int:...

llama_n_layer(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_layer",[llama_model_p_ctypes],ctypes.c_int32)defllama_n_layer(model:llama_model_p,/)->int:...

llama_n_head(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_head",[llama_model_p_ctypes],ctypes.c_int32)defllama_n_head(model:llama_model_p,/)->int:...

llama_n_vocab(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_vocab",[llama_vocab_p_ctypes],ctypes.c_int32)defllama_n_vocab(model:llama_vocab_p,/)->int:...

llama_get_model(ctx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_get_model",[llama_context_p_ctypes],llama_model_p_ctypes)defllama_get_model(ctx:llama_context_p,/)->Optional[llama_model_p]:...

llama_get_memory(ctx)

Get the memory for the context

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_get_memory",[llama_context_p_ctypes],llama_memory_t_ctypes)defllama_get_memory(ctx:llama_context_p,/)->Optional[llama_memory_t]:"""Get the memory for the context"""...

llama_pooling_type(ctx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_pooling_type",[llama_context_p_ctypes],ctypes.c_int)defllama_pooling_type(ctx:llama_context_p,/)->int:...

llama_get_kv_self(ctx)

Get the KV cache for self-attention (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_get_kv_self",[llama_context_p_ctypes],llama_kv_cache_p_ctypes,)defllama_get_kv_self(ctx:llama_context_p,/)->Optional[llama_kv_cache_p]:"""Get the KV cache for self-attention (DEPRECATED)"""...

llama_model_get_vocab(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_get_vocab",[llama_model_p_ctypes],llama_vocab_p_ctypes)defllama_model_get_vocab(model:llama_model_p,/)->Optional[llama_vocab_p]:...

llama_model_rope_type(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_rope_type",[llama_model_p_ctypes],ctypes.c_int)defllama_model_rope_type(model:llama_model_p,/)->int:...

llama_model_n_ctx_train(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_ctx_train",[llama_model_p_ctypes],ctypes.c_int32)defllama_model_n_ctx_train(model:llama_model_p,/)->int:...

llama_model_n_embd(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_embd",[llama_model_p_ctypes],ctypes.c_int32)defllama_model_n_embd(model:llama_model_p,/)->int:...

llama_model_n_layer(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_layer",[llama_model_p_ctypes],ctypes.c_int32)defllama_model_n_layer(model:llama_model_p,/)->int:...

llama_model_n_head(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_head",[llama_model_p_ctypes],ctypes.c_int32)defllama_model_n_head(model:llama_model_p,/)->int:...

llama_model_n_head_kv(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_head_kv",[llama_model_p_ctypes],ctypes.c_int32)defllama_model_n_head_kv(model:llama_model_p,/)->int:...

llama_model_n_swa(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_swa",[llama_model_p_ctypes],ctypes.c_int32)defllama_model_n_swa(model:llama_model_p,/)->int:...

llama_model_rope_freq_scale_train(model)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_rope_freq_scale_train",[llama_model_p_ctypes],ctypes.c_float)defllama_model_rope_freq_scale_train(model:llama_model_p,/)->float:...

llama_model_n_cls_out(model)

Returns the number of classifier outputs (only valid for classifier models)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_cls_out",[llama_model_p_ctypes],ctypes.c_uint32)defllama_model_n_cls_out(model:llama_model_p,/)->int:"""Returns the number of classifier outputs (only valid for classifier models)"""...

llama_model_cls_label(model,i)

Returns label of classifier output by index. Returns None if no label provided

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_cls_label",[llama_model_p_ctypes,ctypes.c_uint32],ctypes.c_char_p)defllama_model_cls_label(model:llama_model_p,i:int,/)->Optional[bytes]:"""Returns label of classifier output by index. Returns None if no label provided"""...

llama_vocab_type(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_type",[llama_vocab_p_ctypes],ctypes.c_int)defllama_vocab_type(vocab:llama_vocab_p,/)->int:...

llama_vocab_n_tokens(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_n_tokens",[llama_vocab_p_ctypes],ctypes.c_int32)defllama_vocab_n_tokens(vocab:llama_vocab_p,/)->int:...

llama_model_meta_val_str(model,key,buf,buf_size)

Get metadata value as a string by key name

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_meta_val_str",[llama_model_p_ctypes,ctypes.c_char_p,ctypes.c_char_p,ctypes.c_size_t,],ctypes.c_int32,)defllama_model_meta_val_str(model:llama_model_p,key:Union[ctypes.c_char_p,bytes],buf:bytes,buf_size:int,/,)->int:"""Get metadata value as a string by key name"""...

llama_model_meta_count(model)

Get the number of metadata key/value pairs

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_meta_count",[llama_model_p_ctypes],ctypes.c_int32)defllama_model_meta_count(model:llama_model_p,/)->int:"""Get the number of metadata key/value pairs"""...

llama_model_meta_key_by_index(model,i,buf,buf_size)

Get metadata key name by index

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_meta_key_by_index",[llama_model_p_ctypes,ctypes.c_int32,ctypes.c_char_p,ctypes.c_size_t,],ctypes.c_int32,)defllama_model_meta_key_by_index(model:llama_model_p,i:Union[ctypes.c_int,int],buf:Union[bytes,CtypesArray[ctypes.c_char]],buf_size:int,/,)->int:"""Get metadata key name by index"""...

llama_model_meta_val_str_by_index(model,i,buf,buf_size)

Get metadata value as a string by index

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_meta_val_str_by_index",[llama_model_p_ctypes,ctypes.c_int32,ctypes.c_char_p,ctypes.c_size_t,],ctypes.c_int32,)defllama_model_meta_val_str_by_index(model:llama_model_p,i:Union[ctypes.c_int,int],buf:Union[bytes,CtypesArray[ctypes.c_char]],buf_size:int,/,)->int:"""Get metadata value as a string by index"""...

llama_model_desc(model,buf,buf_size)

Get a string describing the model type

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_desc",[llama_model_p_ctypes,ctypes.c_char_p,ctypes.c_size_t],ctypes.c_int32,)defllama_model_desc(model:llama_model_p,buf:Union[bytes,CtypesArray[ctypes.c_char]],buf_size:Union[ctypes.c_size_t,int],/,)->int:"""Get a string describing the model type"""...

llama_model_size(model)

Returns the total size of all the tensors in the model in bytes

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_size",[llama_model_p_ctypes],ctypes.c_uint64)defllama_model_size(model:llama_model_p,/)->int:"""Returns the total size of all the tensors in the model in bytes"""...

llama_model_chat_template(model,name)

Get the default chat template. Returns None if not availableIf name is None, returns the default chat template

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_chat_template",[llama_model_p_ctypes,ctypes.c_char_p],ctypes.c_char_p)defllama_model_chat_template(model:llama_model_p,name:Optional[bytes],/)->Optional[bytes]:"""Get the default chat template. Returns None if not available    If name is None, returns the default chat template"""...

llama_model_n_params(model)

Returns the total number of parameters in the model

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_n_params",[llama_model_p_ctypes],ctypes.c_uint64)defllama_model_n_params(model:llama_model_p,/)->int:"""Returns the total number of parameters in the model"""...

llama_model_has_encoder(model)

Returns true if the model contains an encoder that requires llama_encode() call

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_has_encoder",[llama_model_p_ctypes],ctypes.c_bool)defllama_model_has_encoder(model:llama_model_p,/)->bool:"""Returns true if the model contains an encoder that requires llama_encode() call"""...

llama_model_has_decoder(model)

Returns true if the model contains a decoder that requires llama_decode() call

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_has_decoder",[llama_model_p_ctypes],ctypes.c_bool)defllama_model_has_decoder(model:llama_model_p,/)->bool:"""Returns true if the model contains a decoder that requires llama_decode() call"""...

llama_model_decoder_start_token(model)

For encoder-decoder models, this function returns id of the token that must be providedto the decoder to start generating output sequence. For other models, it returns -1.

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_decoder_start_token",[llama_model_p_ctypes],ctypes.c_int32)defllama_model_decoder_start_token(model:llama_model_p,/)->int:"""For encoder-decoder models, this function returns id of the token that must be provided    to the decoder to start generating output sequence. For other models, it returns -1.    """...

llama_model_is_recurrent(model)

Returns true if the model is recurrent (like Mamba, RWKV, etc.)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_is_recurrent",[llama_model_p_ctypes],ctypes.c_bool)defllama_model_is_recurrent(model:llama_model_p,/)->bool:"""Returns true if the model is recurrent (like Mamba, RWKV, etc.)"""...

llama_model_quantize(fname_inp,fname_out,params)

Returns 0 on success

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_model_quantize",[ctypes.c_char_p,ctypes.c_char_p,ctypes.POINTER(llama_model_quantize_params),],ctypes.c_uint32,)defllama_model_quantize(fname_inp:bytes,fname_out:bytes,params:CtypesPointerOrRef[llama_model_quantize_params],/,)->int:"""Returns 0 on success"""...

llama_adapter_lora_init(model,path_lora)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_adapter_lora_init",[llama_model_p_ctypes,ctypes.c_char_p],llama_adapter_lora_p_ctypes,)defllama_adapter_lora_init(model:llama_model_p,path_lora:bytes,/)->Optional[llama_adapter_lora_p]:...

llama_adapter_lora_free(adapter)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_adapter_lora_free",[llama_adapter_lora_p_ctypes],None,)defllama_adapter_lora_free(adapter:llama_adapter_lora_p,/):...

llama_set_adapter_lora(ctx,adapter,scale)

Add a loaded LoRA adapter to given contextThis will not modify model's weight

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_set_adapter_lora",[llama_context_p_ctypes,llama_adapter_lora_p_ctypes,ctypes.c_float],ctypes.c_int32,)defllama_set_adapter_lora(ctx:llama_context_p,adapter:llama_adapter_lora_p,scale:float,/)->int:"""Add a loaded LoRA adapter to given context    This will not modify model's weight"""...

llama_rm_adapter_lora(ctx,adapter)

Remove a specific LoRA adapter from given contextReturn -1 if the adapter is not present in the context

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_rm_adapter_lora",[llama_context_p_ctypes,llama_adapter_lora_p_ctypes],ctypes.c_int32,)defllama_rm_adapter_lora(ctx:llama_context_p,adapter:llama_adapter_lora_p,/)->int:"""Remove a specific LoRA adapter from given context    Return -1 if the adapter is not present in the context"""...

llama_clear_adapter_lora(ctx)

Remove all LoRA adapters from given context

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_clear_adapter_lora",[llama_context_p_ctypes],None,)defllama_clear_adapter_lora(ctx:llama_context_p,/):"""Remove all LoRA adapters from given context"""...

llama_apply_adapter_cvec(ctx,data,len,n_embd,il_start,il_end)

Apply a loaded control vector to a llama_context, or if data is NULL, clearthe currently loaded vector.n_embd should be the size of a single layer's control, and data should pointto an n_embd x n_layers buffer starting from layer 1.il_start and il_end are the layer range the vector should apply to (both inclusive)See llama_control_vector_load in common to load a control vector.

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_apply_adapter_cvec",[llama_context_p_ctypes,ctypes.POINTER(ctypes.c_float),ctypes.c_size_t,ctypes.c_int32,ctypes.c_int32,ctypes.c_int32,],ctypes.c_int32,)defllama_apply_adapter_cvec(ctx:llama_context_p,data:CtypesPointerOrRef[ctypes.c_float],len:int,n_embd:int,il_start:int,il_end:int,/,)->int:"""Apply a loaded control vector to a llama_context, or if data is NULL, clear    the currently loaded vector.    n_embd should be the size of a single layer's control, and data should point    to an n_embd x n_layers buffer starting from layer 1.    il_start and il_end are the layer range the vector should apply to (both inclusive)    See llama_control_vector_load in common to load a control vector."""...

llama_memory_clear(mem,data)

Clear the memory contentsIf data == true, the data buffers will also be cleared together with the metadata

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_memory_clear",[llama_memory_t_ctypes,ctypes.c_bool],None,)defllama_memory_clear(mem:llama_memory_t,data:bool,/):"""Clear the memory contents    If data == true, the data buffers will also be cleared together with the metadata"""...

llama_memory_seq_rm(mem,seq_id,p0,p1)

Removes all tokens that belong to the specified sequence and have positions in [p0, p1)

Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails

seq_id < 0 : match any sequencep0 < 0 : [0, p1]p1 < 0 : [p0, inf)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_memory_seq_rm",[llama_memory_t_ctypes,llama_seq_id,llama_pos,llama_pos,],ctypes.c_bool,)defllama_memory_seq_rm(mem:llama_memory_t,seq_id:Union[llama_seq_id,int],p0:Union[llama_pos,int],p1:Union[llama_pos,int],/,)->bool:"""Removes all tokens that belong to the specified sequence and have positions in [p0, p1)    Returns false if a partial sequence cannot be removed. Removing a whole sequence never fails    seq_id < 0 : match any sequence    p0 < 0     : [0,  p1]    p1 < 0     : [p0, inf)"""...

llama_memory_seq_cp(mem,seq_id_src,seq_id_dst,p0,p1)

Copy all tokens that belong to the specified sequence to another sequencep0 < 0 : [0, p1]p1 < 0 : [p0, inf)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_memory_seq_cp",[llama_memory_t_ctypes,llama_seq_id,llama_seq_id,llama_pos,llama_pos,],None,)defllama_memory_seq_cp(mem:llama_memory_t,seq_id_src:Union[llama_seq_id,int],seq_id_dst:Union[llama_seq_id,int],p0:Union[llama_pos,int],p1:Union[llama_pos,int],/,):"""Copy all tokens that belong to the specified sequence to another sequence    p0 < 0 : [0,  p1]    p1 < 0 : [p0, inf)"""...

llama_memory_seq_keep(mem,seq_id)

Removes all tokens that do not belong to the specified sequence

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_memory_seq_keep",[llama_memory_t_ctypes,llama_seq_id],None)defllama_memory_seq_keep(mem:llama_memory_t,seq_id:Union[llama_seq_id,int],/):"""Removes all tokens that do not belong to the specified sequence"""...

llama_memory_seq_add(mem,seq_id,p0,p1,delta)

Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)p0 < 0 : [0, p1]p1 < 0 : [p0, inf)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_memory_seq_add",[llama_memory_t_ctypes,llama_seq_id,llama_pos,llama_pos,llama_pos,],None,)defllama_memory_seq_add(mem:llama_memory_t,seq_id:Union[llama_seq_id,int],p0:Union[llama_pos,int],p1:Union[llama_pos,int],delta:Union[llama_pos,int],/,):"""Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)    p0 < 0 : [0,  p1]    p1 < 0 : [p0, inf)"""...

llama_memory_seq_div(mem,seq_id,p0,p1,d)

Integer division of the positions by factor ofd > 1p0 < 0 : [0, p1]p1 < 0 : [p0, inf)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_memory_seq_div",[llama_memory_t_ctypes,llama_seq_id,llama_pos,llama_pos,ctypes.c_int,],None,)defllama_memory_seq_div(mem:llama_memory_t,seq_id:Union[llama_seq_id,int],p0:Union[llama_pos,int],p1:Union[llama_pos,int],d:Union[ctypes.c_int,int],/,):"""Integer division of the positions by factor of `d > 1`    p0 < 0 : [0,  p1]    p1 < 0 : [p0, inf)"""...

llama_memory_seq_pos_min(mem,seq_id)

Returns the smallest position present in the memory for the specified sequenceThis is typically non-zero only for SWA cachesReturn -1 if the sequence is empty

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_memory_seq_pos_min",[llama_memory_t_ctypes,llama_seq_id],llama_pos)defllama_memory_seq_pos_min(mem:llama_memory_t,seq_id:Union[llama_seq_id,int],/)->int:"""Returns the smallest position present in the memory for the specified sequence    This is typically non-zero only for SWA caches    Return -1 if the sequence is empty"""...

llama_memory_seq_pos_max(mem,seq_id)

Returns the largest position present in the memory for the specified sequenceReturn -1 if the sequence is empty

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_memory_seq_pos_max",[llama_memory_t_ctypes,llama_seq_id],llama_pos)defllama_memory_seq_pos_max(mem:llama_memory_t,seq_id:Union[llama_seq_id,int],/)->int:"""Returns the largest position present in the memory for the specified sequence    Return -1 if the sequence is empty"""...

llama_memory_can_shift(mem)

Check if the memory supports shifting

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_memory_can_shift",[llama_memory_t_ctypes],ctypes.c_bool)defllama_memory_can_shift(mem:llama_memory_t,/)->bool:"""Check if the memory supports shifting"""...

llama_kv_self_n_tokens(ctx)

Returns the number of tokens in the KV cache (slow, use only for debug) (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_n_tokens",[llama_context_p_ctypes],ctypes.c_int32)defllama_kv_self_n_tokens(ctx:llama_context_p,/)->int:"""Returns the number of tokens in the KV cache (slow, use only for debug) (DEPRECATED)"""...

llama_kv_self_used_cells(ctx)

Returns the number of used KV cells (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_used_cells",[llama_context_p_ctypes],ctypes.c_int32)defllama_kv_self_used_cells(ctx:llama_context_p,/)->int:"""Returns the number of used KV cells (DEPRECATED)"""...

llama_kv_self_clear(ctx)

Clear the KV cache (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_clear",[llama_context_p_ctypes],None)defllama_kv_self_clear(ctx:llama_context_p,/):"""Clear the KV cache (DEPRECATED)"""...

llama_kv_self_seq_rm(ctx,seq_id,p0,p1)

Remove tokens from KV cache (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_seq_rm",[llama_context_p_ctypes,llama_seq_id,llama_pos,llama_pos,],ctypes.c_bool,)defllama_kv_self_seq_rm(ctx:llama_context_p,seq_id:Union[llama_seq_id,int],p0:Union[llama_pos,int],p1:Union[llama_pos,int],/,)->bool:"""Remove tokens from KV cache (DEPRECATED)"""...

llama_kv_self_seq_cp(ctx,seq_id_src,seq_id_dst,p0,p1)

Copy tokens in KV cache (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_seq_cp",[llama_context_p_ctypes,llama_seq_id,llama_seq_id,llama_pos,llama_pos,],None,)defllama_kv_self_seq_cp(ctx:llama_context_p,seq_id_src:Union[llama_seq_id,int],seq_id_dst:Union[llama_seq_id,int],p0:Union[llama_pos,int],p1:Union[llama_pos,int],/,):"""Copy tokens in KV cache (DEPRECATED)"""...

llama_kv_self_seq_keep(ctx,seq_id)

Keep only specified sequence in KV cache (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_seq_keep",[llama_context_p_ctypes,llama_seq_id],None)defllama_kv_self_seq_keep(ctx:llama_context_p,seq_id:Union[llama_seq_id,int],/):"""Keep only specified sequence in KV cache (DEPRECATED)"""...

llama_kv_self_seq_add(ctx,seq_id,p0,p1,delta)

Add delta to sequence positions in KV cache (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_seq_add",[llama_context_p_ctypes,llama_seq_id,llama_pos,llama_pos,llama_pos,],None,)defllama_kv_self_seq_add(ctx:llama_context_p,seq_id:Union[llama_seq_id,int],p0:Union[llama_pos,int],p1:Union[llama_pos,int],delta:Union[llama_pos,int],/,):"""Add delta to sequence positions in KV cache (DEPRECATED)"""...

llama_kv_self_seq_div(ctx,seq_id,p0,p1,d)

Divide sequence positions in KV cache (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_seq_div",[llama_context_p_ctypes,llama_seq_id,llama_pos,llama_pos,ctypes.c_int,],None,)defllama_kv_self_seq_div(ctx:llama_context_p,seq_id:Union[llama_seq_id,int],p0:Union[llama_pos,int],p1:Union[llama_pos,int],d:Union[ctypes.c_int,int],/,):"""Divide sequence positions in KV cache (DEPRECATED)"""...

llama_kv_self_seq_pos_min(ctx,seq_id)

Returns the smallest position in KV cache for sequence (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_seq_pos_min",[llama_context_p_ctypes,llama_seq_id],llama_pos)defllama_kv_self_seq_pos_min(ctx:llama_context_p,seq_id:Union[llama_seq_id,int],/)->int:"""Returns the smallest position in KV cache for sequence (DEPRECATED)"""...

llama_kv_self_seq_pos_max(ctx,seq_id)

Returns the largest position in KV cache for sequence (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_seq_pos_max",[llama_context_p_ctypes,llama_seq_id],llama_pos)defllama_kv_self_seq_pos_max(ctx:llama_context_p,seq_id:Union[llama_seq_id,int],/)->int:"""Returns the largest position in KV cache for sequence (DEPRECATED)"""...

llama_kv_self_defrag(ctx)

Defragment the KV cache (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_defrag",[llama_context_p_ctypes],None)defllama_kv_self_defrag(ctx:llama_context_p,/):"""Defragment the KV cache (DEPRECATED)"""...

llama_kv_self_can_shift(ctx)

Check if the context supports KV cache shifting (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_can_shift",[llama_context_p_ctypes],ctypes.c_bool)defllama_kv_self_can_shift(ctx:llama_context_p,/)->bool:"""Check if the context supports KV cache shifting (DEPRECATED)"""...

llama_kv_self_update(ctx)

Apply the KV cache updates (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_kv_self_update",[llama_context_p_ctypes],None)defllama_kv_self_update(ctx:llama_context_p,/):"""Apply the KV cache updates (DEPRECATED)"""...

llama_state_get_size(ctx)

Returns theactual size in bytes of the state (logits, embedding and memory)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_state_get_size",[llama_context_p_ctypes],ctypes.c_size_t)defllama_state_get_size(ctx:llama_context_p,/)->int:"""Returns the *actual* size in bytes of the state (logits, embedding and memory)"""...

llama_get_state_size(ctx)

Returns the size in bytes of the state (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_get_state_size",[llama_context_p_ctypes],ctypes.c_size_t)defllama_get_state_size(ctx:llama_context_p,/)->int:"""Returns the size in bytes of the state (DEPRECATED)"""...

llama_state_get_data(ctx,dst,size)

Copies the state to the specified destination address.Destination needs to have allocated enough memory.Returns the number of bytes copied

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_state_get_data",[llama_context_p_ctypes,ctypes.POINTER(ctypes.c_uint8),ctypes.c_size_t,],ctypes.c_size_t,)defllama_state_get_data(ctx:llama_context_p,dst:CtypesArray[ctypes.c_uint8],size:Union[ctypes.c_size_t,int],/,)->int:"""Copies the state to the specified destination address.    Destination needs to have allocated enough memory.    Returns the number of bytes copied"""...

llama_copy_state_data(ctx,dst)

Copies the state to the specified destination address (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_copy_state_data",[llama_context_p_ctypes,ctypes.POINTER(ctypes.c_uint8),],ctypes.c_size_t,)defllama_copy_state_data(ctx:llama_context_p,dst:CtypesArray[ctypes.c_uint8],/)->int:"""Copies the state to the specified destination address (DEPRECATED)"""...

llama_state_set_data(ctx,src,size)

Set the state reading from the specified addressReturns the number of bytes read

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_state_set_data",[llama_context_p_ctypes,ctypes.POINTER(ctypes.c_uint8),ctypes.c_size_t],ctypes.c_size_t,)defllama_state_set_data(ctx:llama_context_p,src:CtypesArray[ctypes.c_uint8],size:Union[ctypes.c_size_t,int],/,)->int:"""Set the state reading from the specified address    Returns the number of bytes read"""...

llama_set_state_data(ctx,src)

Set the state reading from the specified address (DEPRECATED)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_set_state_data",[llama_context_p_ctypes,ctypes.POINTER(ctypes.c_uint8)],ctypes.c_size_t,)defllama_set_state_data(ctx:llama_context_p,src:CtypesArray[ctypes.c_uint8],/)->int:"""Set the state reading from the specified address (DEPRECATED)"""...

llama_state_load_file(ctx,path_session,tokens_out,n_token_capacity,n_token_count_out)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_state_load_file",[llama_context_p_ctypes,ctypes.c_char_p,llama_token_p,ctypes.c_size_t,ctypes.POINTER(ctypes.c_size_t),],ctypes.c_bool,)defllama_state_load_file(ctx:llama_context_p,path_session:bytes,tokens_out:CtypesArray[llama_token],n_token_capacity:Union[ctypes.c_size_t,int],n_token_count_out:CtypesPointerOrRef[ctypes.c_size_t],/,)->bool:...

llama_load_session_file(ctx,path_session,tokens_out,n_token_capacity,n_token_count_out)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_load_session_file",[llama_context_p_ctypes,ctypes.c_char_p,llama_token_p,ctypes.c_size_t,ctypes.POINTER(ctypes.c_size_t),],ctypes.c_bool,)defllama_load_session_file(ctx:llama_context_p,path_session:bytes,tokens_out:CtypesArray[llama_token],n_token_capacity:Union[ctypes.c_size_t,int],n_token_count_out:CtypesPointerOrRef[ctypes.c_size_t],/,)->bool:...

llama_state_save_file(ctx,path_session,tokens,n_token_count)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_state_save_file",[llama_context_p_ctypes,ctypes.c_char_p,llama_token_p,ctypes.c_size_t,],ctypes.c_bool,)defllama_state_save_file(ctx:llama_context_p,path_session:bytes,tokens:CtypesArray[llama_token],n_token_count:Union[ctypes.c_size_t,int],/,)->bool:...

llama_save_session_file(ctx,path_session,tokens,n_token_count)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_save_session_file",[llama_context_p_ctypes,ctypes.c_char_p,llama_token_p,ctypes.c_size_t,],ctypes.c_bool,)defllama_save_session_file(ctx:llama_context_p,path_session:bytes,tokens:CtypesArray[llama_token],n_token_count:Union[ctypes.c_size_t,int],/,)->bool:...

llama_state_seq_get_size(ctx,seq_id)

Get the exact size needed to copy the state of a single sequence

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_state_seq_get_size",[llama_context_p_ctypes,llama_seq_id],ctypes.c_size_t,)defllama_state_seq_get_size(ctx:llama_context_p,seq_id:llama_seq_id,/)->int:"""Get the exact size needed to copy the state of a single sequence"""...

llama_state_seq_get_data(ctx,dst,size,seq_id)

Copy the state of a single sequence into the specified buffer

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_state_seq_get_data",[llama_context_p_ctypes,ctypes.POINTER(ctypes.c_uint8),ctypes.c_size_t,llama_seq_id,],ctypes.c_size_t,)defllama_state_seq_get_data(ctx:llama_context_p,dst:CtypesArray[ctypes.c_uint8],size:Union[ctypes.c_size_t,int],seq_id:llama_seq_id,/,)->int:"""Copy the state of a single sequence into the specified buffer"""...

llama_state_seq_set_data(ctx,src,size,dest_seq_id)

Copy the sequence data into the specified sequence

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_state_seq_set_data",[llama_context_p_ctypes,ctypes.POINTER(ctypes.c_uint8),ctypes.c_size_t,llama_seq_id,],ctypes.c_size_t,)defllama_state_seq_set_data(ctx:llama_context_p,src:CtypesArray[ctypes.c_uint8],size:Union[ctypes.c_size_t,int],dest_seq_id:llama_seq_id,/,)->int:"""Copy the sequence data into the specified sequence"""...

llama_state_seq_save_file(ctx,filepath,seq_id,tokens,n_token_count)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_state_seq_save_file",[llama_context_p_ctypes,ctypes.c_char_p,llama_seq_id,llama_token_p,ctypes.c_size_t,],ctypes.c_size_t,)defllama_state_seq_save_file(ctx:llama_context_p,filepath:bytes,seq_id:llama_seq_id,tokens:CtypesArray[llama_token],n_token_count:Union[ctypes.c_size_t,int],/,)->int:...

llama_state_seq_load_file(ctx,filepath,dest_seq_id,tokens_out,n_token_capacity,n_token_count_out)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_state_seq_load_file",[llama_context_p_ctypes,ctypes.c_char_p,llama_seq_id,llama_token_p,ctypes.c_size_t,ctypes.POINTER(ctypes.c_size_t),],ctypes.c_size_t,)defllama_state_seq_load_file(ctx:llama_context_p,filepath:bytes,dest_seq_id:llama_seq_id,tokens_out:CtypesArray[llama_token],n_token_capacity:Union[ctypes.c_size_t,int],n_token_count_out:CtypesPointerOrRef[ctypes.c_size_t],/,)->int:...

llama_batch_get_one(tokens,n_tokens)

Return batch for single sequence of tokens

NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_batch_get_one",[llama_token_p,ctypes.c_int32,],llama_batch,)defllama_batch_get_one(tokens:CtypesArray[llama_token],n_tokens:Union[ctypes.c_int,int],/,)->llama_batch:"""Return batch for single sequence of tokens    NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it    """...

llama_batch_init(n_tokens,embd,n_seq_max)

Allocates a batch of tokens on the heap that can hold a maximum of n_tokensEach token can be assigned up to n_seq_max sequence idsThe batch has to be freed with llama_batch_free()If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)Otherwise, llama_batch.token will be allocated to store n_tokens llama_tokenThe rest of the llama_batch members are allocated with size n_tokensAll members are left uninitialized

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_batch_init",[ctypes.c_int32,ctypes.c_int32,ctypes.c_int32],llama_batch)defllama_batch_init(n_tokens:Union[ctypes.c_int32,int],embd:Union[ctypes.c_int32,int],n_seq_max:Union[ctypes.c_int32,int],/,)->llama_batch:"""Allocates a batch of tokens on the heap that can hold a maximum of n_tokens    Each token can be assigned up to n_seq_max sequence ids    The batch has to be freed with llama_batch_free()    If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)    Otherwise, llama_batch.token will be allocated to store n_tokens llama_token    The rest of the llama_batch members are allocated with size n_tokens    All members are left uninitialized"""...

llama_batch_free(batch)

Frees a batch of tokens allocated with llama_batch_init()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_batch_free",[llama_batch],None)defllama_batch_free(batch:llama_batch,/):"""Frees a batch of tokens allocated with llama_batch_init()"""...

llama_encode(ctx,batch)

Process a batch of tokens using the encoder.0 - success< 0 - error

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_encode",[llama_context_p_ctypes,llama_batch],ctypes.c_int32)defllama_encode(ctx:llama_context_p,batch:llama_batch,/)->int:"""Process a batch of tokens using the encoder.    0 - success    < 0 - error"""...

llama_decode(ctx,batch)

Process a batch of tokens.0 - success1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)2 - aborted (processed ubatches will remain in the context's memory)-1 - invalid input batch< -1 - fatal error (processed ubatches will remain in the context's memory)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_decode",[llama_context_p_ctypes,llama_batch],ctypes.c_int32)defllama_decode(ctx:llama_context_p,batch:llama_batch,/)->int:"""Process a batch of tokens.    0 - success    1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)    2 - aborted (processed ubatches will remain in the context's memory)    -1 - invalid input batch    < -1 - fatal error (processed ubatches will remain in the context's memory)"""...

llama_set_n_threads(ctx,n_threads,n_threads_batch)

Set the number of threads used for decodingn_threads is the number of threads used for generation (single token)n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_set_n_threads",[llama_context_p_ctypes,ctypes.c_int32,ctypes.c_int32,],None,)defllama_set_n_threads(ctx:llama_context_p,n_threads:Union[ctypes.c_int32,int],n_threads_batch:Union[ctypes.c_int32,int],/,):"""Set the number of threads used for decoding    n_threads is the number of threads used for generation (single token)    n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)    """...

llama_n_threads(ctx)

Get the number of threads used for generation of a single token

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_threads",[llama_context_p_ctypes],ctypes.c_int32)defllama_n_threads(ctx:llama_context_p,/)->int:"""Get the number of threads used for generation of a single token"""...

llama_n_threads_batch(ctx)

Get the number of threads used for prompt and batch processing (multiple token)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_n_threads_batch",[llama_context_p_ctypes],ctypes.c_int32)defllama_n_threads_batch(ctx:llama_context_p,/)->int:"""Get the number of threads used for prompt and batch processing (multiple token)"""...

llama_set_embeddings(ctx,embeddings)

Set whether the context outputs embeddings or not

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_set_embeddings",[llama_context_p_ctypes,ctypes.c_bool],None)defllama_set_embeddings(ctx:llama_context_p,embeddings:bool,/):"""Set whether the context outputs embeddings or not"""...

llama_set_causal_attn(ctx,causal_attn)

Set whether to use causal attention or notIf set to true, the model will only attend to the past tokens

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_set_causal_attn",[llama_context_p_ctypes,ctypes.c_bool],None)defllama_set_causal_attn(ctx:llama_context_p,causal_attn:bool,/):"""Set whether to use causal attention or not    If set to true, the model will only attend to the past tokens"""...

llama_set_warmup(ctx,warmup)

Set whether the model is in warmup mode or notIf true, all model tensors are activated during llama_decode() to load and cache their weights.

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_set_warmup",[llama_context_p_ctypes,ctypes.c_bool],None)defllama_set_warmup(ctx:llama_context_p,warmup:bool,/):"""Set whether the model is in warmup mode or not    If true, all model tensors are activated during llama_decode() to load and cache their weights."""...

llama_set_abort_callback(ctx,abort_callback,abort_callback_data)

Set abort callback

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_set_abort_callback",[llama_context_p_ctypes,ggml_abort_callback,ctypes.c_void_p],None,)defllama_set_abort_callback(ctx:llama_context_p,abort_callback:Callable[[ctypes.c_void_p],None],abort_callback_data:ctypes.c_void_p,/,):"""Set abort callback"""...

llama_synchronize(ctx)

Wait until all computations are finishedThis is automatically done when using one of the functions below to obtain the computation resultsand is not necessary to call it explicitly in most cases

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_synchronize",[llama_context_p_ctypes],None)defllama_synchronize(ctx:llama_context_p,/):"""Wait until all computations are finished    This is automatically done when using one of the functions below to obtain the computation results    and is not necessary to call it explicitly in most cases"""...

llama_get_logits(ctx)

Token logits obtained from the last call to llama_decode()The logits for which llama_batch.logits[i] != 0 are stored contiguouslyin the order they have appeared in the batch.Rows: number of tokens for which llama_batch.logits[i] != 0Cols: n_vocab

Returns:

  • CtypesArray[c_float]

    Pointer to the logits buffer of shape (n_tokens, n_vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_get_logits",[llama_context_p_ctypes],ctypes.POINTER(ctypes.c_float))defllama_get_logits(ctx:llama_context_p,/)->CtypesArray[ctypes.c_float]:"""Token logits obtained from the last call to llama_decode()    The logits for which llama_batch.logits[i] != 0 are stored contiguously    in the order they have appeared in the batch.    Rows: number of tokens for which llama_batch.logits[i] != 0    Cols: n_vocab    Returns:        Pointer to the logits buffer of shape (n_tokens, n_vocab)"""...

llama_get_logits_ith(ctx,i)

Logits for the ith token. Equivalent to:llama_get_logits(ctx) + i*n_vocab

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_get_logits_ith",[llama_context_p_ctypes,ctypes.c_int32],ctypes.POINTER(ctypes.c_float),)defllama_get_logits_ith(ctx:llama_context_p,i:Union[ctypes.c_int32,int],/)->CtypesArray[ctypes.c_float]:"""Logits for the ith token. Equivalent to:    llama_get_logits(ctx) + i*n_vocab"""...

llama_get_embeddings(ctx)

Get the embeddings for the inputshape: [n_embd] (1-dimensional)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_get_embeddings",[llama_context_p_ctypes],ctypes.POINTER(ctypes.c_float))defllama_get_embeddings(ctx:llama_context_p,/)->CtypesArray[ctypes.c_float]:"""Get the embeddings for the input    shape: [n_embd] (1-dimensional)"""...

llama_get_embeddings_ith(ctx,i)

Get the embeddings for the ith sequencellama_get_embeddings(ctx) + i*n_embd

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_get_embeddings_ith",[llama_context_p_ctypes,ctypes.c_int32],ctypes.POINTER(ctypes.c_float),)defllama_get_embeddings_ith(ctx:llama_context_p,i:Union[ctypes.c_int32,int],/)->CtypesArray[ctypes.c_float]:"""Get the embeddings for the ith sequence    llama_get_embeddings(ctx) + i*n_embd"""...

llama_get_embeddings_seq(ctx,seq_id)

Get the embeddings for a sequence idReturns NULL if pooling_type is LLAMA_POOLING_TYPE_NONEshape: [n_embd] (1-dimensional)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_get_embeddings_seq",[llama_context_p_ctypes,llama_seq_id],ctypes.POINTER(ctypes.c_float),)defllama_get_embeddings_seq(ctx:llama_context_p,seq_id:Union[llama_seq_id,int],/)->CtypesArray[ctypes.c_float]:"""Get the embeddings for a sequence id    Returns NULL if pooling_type is LLAMA_POOLING_TYPE_NONE    shape: [n_embd] (1-dimensional)"""...

llama_vocab_get_text(vocab,token)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_get_text",[llama_vocab_p_ctypes,llama_token],ctypes.c_char_p)defllama_vocab_get_text(vocab:llama_vocab_p,token:Union[llama_token,int],/)->bytes:...

llama_vocab_get_score(vocab,token)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_get_score",[llama_vocab_p_ctypes,llama_token],ctypes.c_float)defllama_vocab_get_score(vocab:llama_vocab_p,token:Union[llama_token,int],/)->float:...

llama_vocab_get_attr(vocab,token)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_get_attr",[llama_vocab_p_ctypes,llama_token],ctypes.c_int)defllama_vocab_get_attr(vocab:llama_vocab_p,token:Union[llama_token,int],/)->int:...

llama_vocab_is_eog(vocab,token)

Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_is_eog",[llama_vocab_p_ctypes,llama_token],ctypes.c_bool)defllama_vocab_is_eog(vocab:llama_vocab_p,token:Union[llama_token,int],/)->bool:"""Check if the token is supposed to end generation (end-of-generation, eg. EOS, EOT, etc.)"""...

llama_vocab_is_control(vocab,token)

Identify if Token Id is a control token or a render-able token

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_is_control",[llama_vocab_p_ctypes,llama_token],ctypes.c_bool)defllama_vocab_is_control(vocab:llama_vocab_p,token:Union[llama_token,int],/)->bool:"""Identify if Token Id is a control token or a render-able token"""...

llama_vocab_bos(vocab)

beginning-of-sentence

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_bos",[llama_vocab_p_ctypes],llama_token)defllama_vocab_bos(vocab:llama_vocab_p,/)->llama_token:"""beginning-of-sentence"""...

llama_vocab_eos(vocab)

end-of-sentence

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_eos",[llama_vocab_p_ctypes],llama_token)defllama_vocab_eos(vocab:llama_vocab_p,/)->llama_token:"""end-of-sentence"""...

llama_vocab_eot(vocab)

end-of-turn

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_eot",[llama_vocab_p_ctypes],llama_token)defllama_vocab_eot(vocab:llama_vocab_p,/)->llama_token:"""end-of-turn"""...

llama_vocab_sep(vocab)

sentence separator

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_sep",[llama_vocab_p_ctypes],llama_token)defllama_vocab_sep(vocab:llama_vocab_p,/)->llama_token:"""sentence separator"""...

llama_vocab_nl(vocab)

next-line

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_nl",[llama_vocab_p_ctypes],llama_token)defllama_vocab_nl(vocab:llama_vocab_p,/)->llama_token:"""next-line"""...

llama_vocab_pad(vocab)

padding

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_pad",[llama_vocab_p_ctypes],llama_token)defllama_vocab_pad(vocab:llama_vocab_p,/)->llama_token:"""padding"""...

llama_vocab_get_add_bos(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_get_add_bos",[llama_vocab_p_ctypes],ctypes.c_bool,)defllama_vocab_get_add_bos(vocab:llama_vocab_p,/)->bool:...

llama_vocab_get_add_eos(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_get_add_eos",[llama_vocab_p_ctypes],ctypes.c_bool,)defllama_vocab_get_add_eos(vocab:llama_vocab_p,/)->bool:...

llama_vocab_get_add_sep(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_get_add_sep",[llama_vocab_p_ctypes],ctypes.c_bool,)defllama_vocab_get_add_sep(vocab:llama_vocab_p,/)->bool:...

llama_vocab_fim_pre(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_fim_pre",[llama_vocab_p_ctypes],llama_token,)defllama_vocab_fim_pre(vocab:llama_vocab_p,/)->llama_token:...

llama_vocab_fim_suf(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_fim_suf",[llama_vocab_p_ctypes],llama_token,)defllama_vocab_fim_suf(vocab:llama_vocab_p,/)->llama_token:...

llama_vocab_fim_mid(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_fim_mid",[llama_vocab_p_ctypes],llama_token,)defllama_vocab_fim_mid(vocab:llama_vocab_p,/)->llama_token:...

llama_vocab_fim_pad(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_fim_pad",[llama_vocab_p_ctypes],llama_token,)defllama_vocab_fim_pad(vocab:llama_vocab_p,/)->llama_token:...

llama_vocab_fim_rep(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_fim_rep",[llama_vocab_p_ctypes],llama_token,)defllama_vocab_fim_rep(vocab:llama_vocab_p,/)->llama_token:...

llama_vocab_fim_sep(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_fim_sep",[llama_vocab_p_ctypes],llama_token,)defllama_vocab_fim_sep(vocab:llama_vocab_p,/)->llama_token:...

llama_token_get_text(vocab,token)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_get_text",[llama_vocab_p_ctypes,llama_token],ctypes.c_char_p,)defllama_token_get_text(vocab:llama_vocab_p,token:Union[llama_token,int],/)->bytes:...

llama_token_get_score(vocab,token)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_get_score",[llama_vocab_p_ctypes,llama_token],ctypes.c_float,)defllama_token_get_score(vocab:llama_vocab_p,token:Union[llama_token,int],/)->float:...

llama_token_get_attr(vocab,token)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_get_attr",[llama_vocab_p_ctypes,llama_token],ctypes.c_int,)defllama_token_get_attr(vocab:llama_vocab_p,token:Union[llama_token,int],/)->int:...

llama_token_is_eog(vocab,token)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_is_eog",[llama_vocab_p_ctypes,llama_token],ctypes.c_bool,)defllama_token_is_eog(vocab:llama_vocab_p,token:Union[llama_token,int],/)->bool:...

llama_token_is_control(vocab,token)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_is_control",[llama_vocab_p_ctypes,llama_token],ctypes.c_bool,)defllama_token_is_control(vocab:llama_vocab_p,token:Union[llama_token,int],/)->bool:...

llama_token_bos(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_bos",[llama_vocab_p_ctypes],llama_token,)defllama_token_bos(vocab:llama_vocab_p,/)->int:...

llama_token_eos(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_eos",[llama_vocab_p_ctypes],llama_token,)defllama_token_eos(vocab:llama_vocab_p,/)->int:...

llama_token_eot(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_eot",[llama_vocab_p_ctypes],llama_token,)defllama_token_eot(vocab:llama_vocab_p,/)->int:...

llama_token_cls(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_cls",[llama_vocab_p_ctypes],llama_token,)defllama_token_cls(vocab:llama_vocab_p,/)->int:...

llama_token_sep(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_sep",[llama_vocab_p_ctypes],llama_token,)defllama_token_sep(vocab:llama_vocab_p,/)->int:...

llama_token_nl(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_nl",[llama_vocab_p_ctypes],llama_token,)defllama_token_nl(vocab:llama_vocab_p,/)->int:...

llama_token_pad(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_pad",[llama_vocab_p_ctypes],llama_token,)defllama_token_pad(vocab:llama_vocab_p,/)->int:...

llama_add_bos_token(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_add_bos_token",[llama_vocab_p_ctypes],ctypes.c_bool,)defllama_add_bos_token(vocab:llama_vocab_p,/)->bool:...

llama_add_eos_token(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_add_eos_token",[llama_vocab_p_ctypes],ctypes.c_bool,)defllama_add_eos_token(vocab:llama_vocab_p,/)->bool:...

llama_token_fim_pre(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_fim_pre",[llama_vocab_p_ctypes],llama_token,)defllama_token_fim_pre(vocab:llama_vocab_p,/)->llama_token:...

llama_token_fim_suf(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_fim_suf",[llama_vocab_p_ctypes],llama_token,)defllama_token_fim_suf(vocab:llama_vocab_p,/)->llama_token:...

llama_token_fim_mid(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_fim_mid",[llama_vocab_p_ctypes],llama_token,)defllama_token_fim_mid(vocab:llama_vocab_p,/)->llama_token:...

llama_token_fim_pad(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_fim_pad",[llama_vocab_p_ctypes],llama_token,)defllama_token_fim_pad(vocab:llama_vocab_p,/)->llama_token:...

llama_token_fim_rep(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_fim_rep",[llama_vocab_p_ctypes],llama_token,)defllama_token_fim_rep(vocab:llama_vocab_p,/)->llama_token:...

llama_token_fim_sep(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_fim_sep",[llama_vocab_p_ctypes],llama_token,)defllama_token_fim_sep(vocab:llama_vocab_p,/)->llama_token:...

llama_vocab_cls(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_vocab_cls",[llama_vocab_p_ctypes],llama_token,)defllama_vocab_cls(vocab:llama_vocab_p,/)->llama_token:...

llama_tokenize(vocab,text,text_len,tokens,n_tokens_max,add_special,parse_special)

Convert the provided text into tokens.

Parameters:

  • vocab (llama_vocab_p) –

    The vocabulary to use for tokenization.

  • text (bytes) –

    The text to tokenize.

  • text_len (Union[c_int,int]) –

    The length of the text.

  • tokens (CtypesArray[llama_token]) –

    The tokens pointer must be large enough to hold the resulting tokens.

  • n_max_tokens

    The maximum number of tokens to return.

  • add_special (Union[c_bool,bool]) –

    Allow adding special tokens if the model is configured to do so.

  • parse_special (Union[c_bool,bool]) –

    Allow parsing special tokens.

Returns:

  • int

    Returns the number of tokens on success, no more than n_tokens_max

  • int

    Returns a negative number on failure - the number of tokens that would have been returned

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_tokenize",[llama_vocab_p_ctypes,ctypes.c_char_p,ctypes.c_int32,llama_token_p,ctypes.c_int32,ctypes.c_bool,ctypes.c_bool,],ctypes.c_int32,)defllama_tokenize(vocab:llama_vocab_p,text:bytes,text_len:Union[ctypes.c_int,int],tokens:CtypesArray[llama_token],n_tokens_max:Union[ctypes.c_int,int],add_special:Union[ctypes.c_bool,bool],parse_special:Union[ctypes.c_bool,bool],/,)->int:"""Convert the provided text into tokens.    Args:        vocab: The vocabulary to use for tokenization.        text: The text to tokenize.        text_len: The length of the text.        tokens: The tokens pointer must be large enough to hold the resulting tokens.        n_max_tokens: The maximum number of tokens to return.        add_special: Allow adding special tokens if the model is configured to do so.        parse_special: Allow parsing special tokens.    Returns:        Returns the number of tokens on success, no more than n_tokens_max        Returns a negative number on failure - the number of tokens that would have been returned    """...

llama_token_to_piece(vocab,token,buf,length,lstrip,special)

Token Id -> Piece.Uses the vocabulary in the provided context.Does not write null terminator to the buffer.User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.

Parameters:

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_token_to_piece",[llama_vocab_p_ctypes,llama_token,ctypes.c_char_p,ctypes.c_int32,ctypes.c_int32,ctypes.c_bool,],ctypes.c_int32,)defllama_token_to_piece(vocab:llama_vocab_p,token:Union[llama_token,int],buf:Union[ctypes.c_char_p,bytes,CtypesArray[ctypes.c_char]],length:Union[ctypes.c_int,int],lstrip:Union[ctypes.c_int,int],special:Union[ctypes.c_bool,bool],/,)->int:"""Token Id -> Piece.    Uses the vocabulary in the provided context.    Does not write null terminator to the buffer.    User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.    Args:        vocab: The vocabulary to use for tokenization.        token: The token to convert.        buf: The buffer to write the token to.        length: The length of the buffer.        lstrip: The number of leading spaces to skip.        special: If true, special tokens are rendered in the output."""...

llama_detokenize(vocab,tokens,n_tokens,text,text_len_max,remove_special,unparse_special)

Convert the provided tokens into text (inverse of llama_tokenize()).

Parameters:

  • vocab (llama_vocab_p) –

    The vocabulary to use for tokenization.

  • tokens (CtypesArray[llama_token]) –

    The tokens to convert.

  • n_tokens (Union[c_int,int]) –

    The number of tokens.

  • text (bytes) –

    The buffer to write the text to.

  • text_len_max (Union[c_int,int]) –

    The length of the buffer.

  • remove_special (Union[c_bool,bool]) –

    Allow to remove BOS and EOS tokens if model is configured to do so.

  • unparse_special (Union[c_bool,bool]) –

    If true, special tokens are rendered in the output.

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_detokenize",[llama_vocab_p_ctypes,ctypes.POINTER(llama_token),ctypes.c_int32,ctypes.c_char_p,ctypes.c_int32,ctypes.c_bool,ctypes.c_bool,],ctypes.c_int32,)defllama_detokenize(vocab:llama_vocab_p,tokens:CtypesArray[llama_token],n_tokens:Union[ctypes.c_int,int],text:bytes,text_len_max:Union[ctypes.c_int,int],remove_special:Union[ctypes.c_bool,bool],unparse_special:Union[ctypes.c_bool,bool],/,)->int:"""Convert the provided tokens into text (inverse of llama_tokenize()).    Args:        vocab: The vocabulary to use for tokenization.        tokens: The tokens to convert.        n_tokens: The number of tokens.        text: The buffer to write the text to.        text_len_max: The length of the buffer.        remove_special: Allow to remove BOS and EOS tokens if model is configured to do so.        unparse_special: If true, special tokens are rendered in the output."""...

llama_chat_apply_template(tmpl,chat,n_msg,add_ass,buf,length)

Apply chat template.

Parameters:

  • tmpl (bytes) –

    Template to use. If None, uses model's default

  • chat (CtypesArray[llama_chat_message]) –

    Array of chat messages

  • n_msg (int) –

    Number of messages

  • add_ass (bool) –

    Whether to end prompt with assistant token

  • buf (bytes) –

    Output buffer

  • length (int) –

    Buffer length

Returns:

  • int

    Number of bytes written, or needed if buffer too small

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_chat_apply_template",[ctypes.c_char_p,# tmplctypes.POINTER(llama_chat_message),# chatctypes.c_size_t,# n_msgctypes.c_bool,# add_ass (added)ctypes.c_char_p,# bufctypes.c_int32,# length],ctypes.c_int32,)defllama_chat_apply_template(tmpl:bytes,chat:CtypesArray[llama_chat_message],n_msg:int,add_ass:bool,# Added parameterbuf:bytes,length:int,/,)->int:"""Apply chat template.    Args:        tmpl: Template to use. If None, uses model's default        chat: Array of chat messages        n_msg: Number of messages        add_ass: Whether to end prompt with assistant token        buf: Output buffer        length: Buffer length    Returns:        Number of bytes written, or needed if buffer too small    """...

llama_chat_builtin_templates(output,len)

Get list of built-in chat templates.

Parameters:

  • output (CtypesArray[bytes]) –

    Output buffer to store template names.

  • len (Union[c_size_t,int]) –

    Length of the output buffer.

Returns:

  • int

    Number of templates available.

  • int

    Returns a negative number on error.

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_chat_builtin_templates",[ctypes.POINTER(ctypes.c_char_p),ctypes.c_size_t,],ctypes.c_int32,)defllama_chat_builtin_templates(output:CtypesArray[bytes],len:Union[ctypes.c_size_t,int],/,)->int:"""Get list of built-in chat templates.    Args:        output: Output buffer to store template names.        len: Length of the output buffer.    Returns:        Number of templates available.        Returns a negative number on error.    """...

llama_sampler_context_t=ctypes.c_void_pmodule-attribute

llama_sampler_i

Bases:Structure

Source code inllama_cpp/llama_cpp.py
classllama_sampler_i(ctypes.Structure):...

llama_sampler

Bases:Structure

Source code inllama_cpp/llama_cpp.py
classllama_sampler(ctypes.Structure):_fields_=[("iface",ctypes.POINTER(llama_sampler_i)),("ctx",llama_sampler_context_t),]

llama_sampler_p=CtypesPointer[llama_sampler]module-attribute

llama_sampler_p_ctypes=ctypes.POINTER(llama_sampler)module-attribute

llama_sampler_i_name=ctypes.CFUNCTYPE(ctypes.c_char_p,llama_sampler_p_ctypes)module-attribute

llama_sampler_i_accept=ctypes.CFUNCTYPE(None,llama_sampler_p_ctypes,llama_token)module-attribute

llama_sampler_i_apply=ctypes.CFUNCTYPE(None,llama_sampler_p_ctypes,llama_token_data_array_p)module-attribute

llama_sampler_i_reset=ctypes.CFUNCTYPE(None,llama_sampler_p_ctypes)module-attribute

llama_sampler_i_clone=ctypes.CFUNCTYPE(llama_sampler_p_ctypes,llama_sampler_p_ctypes)module-attribute

llama_sampler_i_free=ctypes.CFUNCTYPE(None,llama_sampler_p_ctypes)module-attribute

llama_sampler_init(iface,ctx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init",[ctypes.POINTER(llama_sampler_i),llama_sampler_context_t],llama_sampler_p_ctypes,)defllama_sampler_init(iface:ctypes.POINTER(llama_sampler_i),ctx:llama_sampler_context_t,/)->llama_sampler_p:...

llama_sampler_name(smpl)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_name",[llama_sampler_p_ctypes],ctypes.c_char_p,)defllama_sampler_name(smpl:llama_sampler_p,/)->bytes:...

llama_sampler_accept(smpl,token)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_accept",[llama_sampler_p_ctypes,llama_token],None,)defllama_sampler_accept(smpl:llama_sampler_p,token:Union[llama_token,int],/):...

llama_sampler_apply(smpl,cur_p)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_apply",[llama_sampler_p_ctypes,llama_token_data_array_p],None,)defllama_sampler_apply(smpl:llama_sampler_p,cur_p:CtypesArray[llama_token_data_array],/):...

llama_sampler_reset(smpl)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_reset",[llama_sampler_p_ctypes],None,)defllama_sampler_reset(smpl:llama_sampler_p,/):...

llama_sampler_clone(smpl)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_clone",[llama_sampler_p_ctypes],llama_sampler_p_ctypes,)defllama_sampler_clone(smpl:llama_sampler_p,/)->llama_sampler_p:...

llama_sampler_free(smpl)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_free",[llama_sampler_p_ctypes],None,)defllama_sampler_free(smpl:llama_sampler_p,/):...

llama_sampler_chain_init(params)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_chain_init",[llama_sampler_chain_params],llama_sampler_p_ctypes,)defllama_sampler_chain_init(params:llama_sampler_chain_params,/)->llama_sampler_p:...

llama_sampler_chain_add(chain,smpl)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_chain_add",[llama_sampler_p_ctypes,llama_sampler_p_ctypes],None,)defllama_sampler_chain_add(chain:llama_sampler_p,smpl:llama_sampler_p,/):...

llama_sampler_chain_get(chain,i)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_chain_get",[llama_sampler_p_ctypes,ctypes.c_int32],llama_sampler_p_ctypes,)defllama_sampler_chain_get(chain:llama_sampler_p,i:Union[ctypes.c_int32,int],/)->llama_sampler_p:...

llama_sampler_chain_n(chain)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_chain_n",[llama_sampler_p_ctypes],ctypes.c_int,)defllama_sampler_chain_n(chain:llama_sampler_p,/)->int:...

llama_sampler_chain_remove(chain,i)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_chain_remove",[llama_sampler_p_ctypes,ctypes.c_int32],llama_sampler_p_ctypes,)defllama_sampler_chain_remove(chain:llama_sampler_p,i:Union[ctypes.c_int32,int],/)->llama_sampler_p:...

llama_sampler_init_greedy()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_greedy",[],llama_sampler_p_ctypes)defllama_sampler_init_greedy()->llama_sampler_p:...

llama_sampler_init_dist(seed)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_dist",[ctypes.c_uint32],llama_sampler_p_ctypes)defllama_sampler_init_dist(seed:int)->llama_sampler_p:...

llama_sampler_init_softmax()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_softmax",[],llama_sampler_p_ctypes)defllama_sampler_init_softmax()->llama_sampler_p:...

llama_sampler_init_top_k(k)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_top_k",[ctypes.c_int32],llama_sampler_p_ctypes)defllama_sampler_init_top_k(k:int)->llama_sampler_p:...

llama_sampler_init_top_p(p,min_keep)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_top_p",[ctypes.c_float,ctypes.c_size_t],llama_sampler_p_ctypes,)defllama_sampler_init_top_p(p:float,min_keep:int)->llama_sampler_p:...

llama_sampler_init_min_p(p,min_keep)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_min_p",[ctypes.c_float,ctypes.c_size_t],llama_sampler_p_ctypes,)defllama_sampler_init_min_p(p:float,min_keep:int)->llama_sampler_p:...

llama_sampler_init_typical(p,min_keep)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_typical",[ctypes.c_float,ctypes.c_size_t],llama_sampler_p_ctypes,)defllama_sampler_init_typical(p:float,min_keep:int)->llama_sampler_p:...

llama_sampler_init_temp(t)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_temp",[ctypes.c_float],llama_sampler_p_ctypes)defllama_sampler_init_temp(t:float)->llama_sampler_p:...

llama_sampler_init_temp_ext(t,delta,exponent)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_temp_ext",[ctypes.c_float,ctypes.c_float,ctypes.c_float],llama_sampler_p_ctypes,)defllama_sampler_init_temp_ext(t:float,delta:float,exponent:float)->llama_sampler_p:...

llama_sampler_init_xtc(p,t,min_keep,seed)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_xtc",[ctypes.c_float,ctypes.c_float,ctypes.c_size_t,ctypes.c_uint32],llama_sampler_p_ctypes,)defllama_sampler_init_xtc(p:float,t:float,min_keep:int,seed:int,/)->llama_sampler_p:...

llama_sampler_init_top_n_sigma(n)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_top_n_sigma",[ctypes.c_float],llama_sampler_p_ctypes,)defllama_sampler_init_top_n_sigma(n:float,/)->llama_sampler_p:...

llama_sampler_init_mirostat(n_vocab,seed,tau,eta,m)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_mirostat",[ctypes.c_int32,ctypes.c_uint32,ctypes.c_float,ctypes.c_float,ctypes.c_int32],llama_sampler_p_ctypes,)defllama_sampler_init_mirostat(n_vocab:int,seed:int,tau:float,eta:float,m:int,/)->llama_sampler_p:...

llama_sampler_init_mirostat_v2(seed,tau,eta)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_mirostat_v2",[ctypes.c_uint32,ctypes.c_float,ctypes.c_float],llama_sampler_p_ctypes,)defllama_sampler_init_mirostat_v2(seed:int,tau:float,eta:float,/)->llama_sampler_p:...

llama_sampler_init_grammar(vocab,grammar_str,grammar_root)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_grammar",[llama_vocab_p_ctypes,ctypes.c_char_p,ctypes.c_char_p],llama_sampler_p_ctypes,)defllama_sampler_init_grammar(vocab:llama_vocab_p,grammar_str:bytes,grammar_root:bytes,/)->llama_sampler_p:...

llama_sampler_init_grammar_lazy(vocab,grammar_str,grammar_root,trigger_words,num_trigger_words,trigger_tokens,num_trigger_tokens)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_grammar_lazy",[llama_vocab_p_ctypes,ctypes.c_char_p,ctypes.c_char_p,ctypes.POINTER(ctypes.c_char_p),ctypes.c_size_t,ctypes.POINTER(llama_token),ctypes.c_size_t,],llama_sampler_p_ctypes,)defllama_sampler_init_grammar_lazy(vocab:llama_vocab_p,grammar_str:bytes,grammar_root:bytes,trigger_words:CtypesArray[bytes],num_trigger_words:int,trigger_tokens:CtypesArray[llama_token],num_trigger_tokens:int,/,)->llama_sampler_p:...

llama_sampler_init_grammar_lazy_patterns(vocab,grammar_str,grammar_root,trigger_patterns,num_trigger_patterns,trigger_tokens,num_trigger_tokens)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_grammar_lazy_patterns",[llama_vocab_p_ctypes,ctypes.c_char_p,ctypes.c_char_p,ctypes.POINTER(ctypes.c_char_p),ctypes.c_size_t,ctypes.POINTER(llama_token),ctypes.c_size_t,],llama_sampler_p_ctypes,)defllama_sampler_init_grammar_lazy_patterns(vocab:llama_vocab_p,grammar_str:bytes,grammar_root:bytes,trigger_patterns:CtypesArray[bytes],num_trigger_patterns:int,trigger_tokens:CtypesArray[llama_token],num_trigger_tokens:int,/,)->llama_sampler_p:...

llama_sampler_init_penalties(penalty_last_n,penalty_repeat,penalty_freq,penalty_present)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_penalties",[ctypes.c_int32,ctypes.c_float,ctypes.c_float,ctypes.c_float],llama_sampler_p_ctypes,)defllama_sampler_init_penalties(penalty_last_n:int,penalty_repeat:float,penalty_freq:float,penalty_present:float,/,)->llama_sampler_p:...

llama_sampler_init_dry(vocab,n_ctx_train,dry_multiplier,dry_base,dry_allowed_length,dry_penalty_last_n,seq_breakers,num_breakers)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_dry",[llama_vocab_p_ctypes,ctypes.c_int32,ctypes.c_float,ctypes.c_float,ctypes.c_int32,ctypes.c_int32,ctypes.POINTER(ctypes.c_char_p),ctypes.c_size_t,],llama_sampler_p_ctypes,)defllama_sampler_init_dry(vocab:llama_vocab_p,n_ctx_train:int,dry_multiplier:float,dry_base:float,dry_allowed_length:int,dry_penalty_last_n:int,seq_breakers,num_breakers:int,/,)->llama_sampler_p:...

llama_sampler_init_logit_bias(n_vocab,n_logit_bias,logit_bias)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_logit_bias",[ctypes.c_int32,ctypes.c_int32,llama_logit_bias_p],llama_sampler_p_ctypes,)defllama_sampler_init_logit_bias(n_vocab:int,n_logit_bias:int,logit_bias:CtypesArray[llama_logit_bias],/)->llama_sampler_p:...

llama_sampler_init_infill(vocab)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_init_infill",[llama_vocab_p_ctypes],llama_sampler_p_ctypes,)defllama_sampler_init_infill(vocab:llama_vocab_p,/)->llama_sampler_p:...

llama_sampler_get_seed(smpl)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_get_seed",[llama_sampler_p_ctypes],ctypes.c_uint32,)defllama_sampler_get_seed(smpl:llama_sampler_p,/)->int:...

llama_sampler_sample(smpl,ctx,idx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_sampler_sample",[llama_sampler_p_ctypes,llama_context_p_ctypes,ctypes.c_int32],llama_token,)defllama_sampler_sample(smpl:llama_sampler_p,ctx:llama_context_p,idx:int,/)->int:...

llama_split_path(split_path,maxlen,path_prefix,split_no,split_count)

Build a split GGUF final path for this chunk.

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_split_path",[ctypes.c_char_p,ctypes.c_size_t,ctypes.c_char_p,ctypes.c_int,ctypes.c_int],ctypes.c_int,)defllama_split_path(split_path:bytes,maxlen:Union[ctypes.c_size_t,int],path_prefix:bytes,split_no:Union[ctypes.c_int,int],split_count:Union[ctypes.c_int,int],/,)->int:"""Build a split GGUF final path for this chunk."""...

llama_split_prefix(split_prefix,maxlen,split_path,split_no,split_count)

Extract the path prefix from the split_path if and only if the split_no and split_count match.

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_split_prefix",[ctypes.c_char_p,ctypes.c_size_t,ctypes.c_char_p,ctypes.c_int,ctypes.c_int],ctypes.c_int,)defllama_split_prefix(split_prefix:bytes,maxlen:Union[ctypes.c_size_t,int],split_path:bytes,split_no:Union[ctypes.c_int,int],split_count:Union[ctypes.c_int,int],/,)->int:"""Extract the path prefix from the split_path if and only if the split_no and split_count match."""...

llama_print_system_info()

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_print_system_info",[],ctypes.c_char_p)defllama_print_system_info()->bytes:...

llama_log_set(log_callback,user_data)

Set callback for all future logging events.

If this is not called, or NULL is supplied, everything is output on stderr.

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_log_set",[ctypes.c_void_p,ctypes.c_void_p],None,)defllama_log_set(log_callback:Optional[CtypesFuncPointer],user_data:ctypes.c_void_p,/,):"""Set callback for all future logging events.    If this is not called, or NULL is supplied, everything is output on stderr."""...

llama_perf_context_data

Bases:Structure

Source code inllama_cpp/llama_cpp.py
classllama_perf_context_data(ctypes.Structure):_fields_=[("t_start_ms",ctypes.c_double),("t_load_ms",ctypes.c_double),("t_p_eval_ms",ctypes.c_double),("t_eval_ms",ctypes.c_double),("n_p_eval",ctypes.c_int32),("n_eval",ctypes.c_int32),]

llama_perf_sampler_data

Bases:Structure

Source code inllama_cpp/llama_cpp.py
classllama_perf_sampler_data(ctypes.Structure):_fields_=[("t_sample_ms",ctypes.c_double),("n_sample",ctypes.c_int32),]

llama_perf_context(ctx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_perf_context",[llama_context_p_ctypes],llama_perf_context_data,)defllama_perf_context(ctx:llama_context_p,/)->llama_perf_context_data:...

llama_perf_context_print(ctx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_perf_context_print",[llama_context_p_ctypes],None,)defllama_perf_context_print(ctx:llama_context_p,/):...

llama_perf_context_reset(ctx)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_perf_context_reset",[llama_context_p_ctypes],None,)defllama_perf_context_reset(ctx:llama_context_p,/):...

llama_perf_sampler(chain)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_perf_sampler",[llama_sampler_p_ctypes],llama_perf_sampler_data,)defllama_perf_sampler(chain:llama_sampler_p,/)->llama_perf_sampler_data:...

llama_perf_sampler_print(chain)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_perf_sampler_print",[llama_sampler_p_ctypes],None,)defllama_perf_sampler_print(chain:llama_sampler_p,/):...

llama_perf_sampler_reset(chain)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_perf_sampler_reset",[llama_sampler_p_ctypes],None,)defllama_perf_sampler_reset(chain:llama_sampler_p,/):...

llama_opt_param_filter=ctypes.CFUNCTYPE(ctypes.c_bool,ctypes.c_void_p,ctypes.c_void_p)module-attribute

llama_opt_param_filter_all(tensor,userdata)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_opt_param_filter_all",[ctypes.c_void_p,ctypes.c_void_p],ctypes.c_bool,)defllama_opt_param_filter_all(tensor:ctypes.c_void_p,userdata:ctypes.c_void_p,/)->bool:...

llama_opt_params

Bases:Structure

Source code inllama_cpp/llama_cpp.py
classllama_opt_params(ctypes.Structure):_fields_=[("n_ctx_train",ctypes.c_uint32),("param_filter",llama_opt_param_filter),("param_filter_ud",ctypes.c_void_p),("get_opt_pars",ctypes.c_void_p),# ggml_opt_get_optimizer_params - not implemented here("get_opt_pars_ud",ctypes.c_void_p),]

llama_opt_init(lctx,model,lopt_params)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_opt_init",[llama_context_p_ctypes,llama_model_p_ctypes,llama_opt_params],None,)defllama_opt_init(lctx:llama_context_p,model:llama_model_p,lopt_params:llama_opt_params,/):...

llama_opt_epoch(lctx,dataset,result_train,result_eval,idata_split,callback_train,callback_eval)

Source code inllama_cpp/llama_cpp.py
@ctypes_function("llama_opt_epoch",[llama_context_p_ctypes,ctypes.c_void_p,# ggml_opt_dataset_tctypes.c_void_p,# ggml_opt_result_tctypes.c_void_p,# ggml_opt_result_tctypes.c_int64,ctypes.c_void_p,# ggml_opt_epoch_callbackctypes.c_void_p,# ggml_opt_epoch_callback],None,)defllama_opt_epoch(lctx:llama_context_p,dataset:ctypes.c_void_p,result_train:ctypes.c_void_p,result_eval:ctypes.c_void_p,idata_split:int,callback_train:ctypes.c_void_p,callback_eval:ctypes.c_void_p,/,):...

LLAMA_MAX_DEVICES=_lib.llama_max_devices()module-attribute

LLAMA_DEFAULT_SEED=4294967295module-attribute

LLAMA_TOKEN_NULL=-1module-attribute

LLAMA_FILE_MAGIC_GGLA=1734831201module-attribute

LLAMA_FILE_MAGIC_GGSN=1734833006module-attribute

LLAMA_FILE_MAGIC_GGSQ=1734833009module-attribute

LLAMA_SESSION_MAGIC=LLAMA_FILE_MAGIC_GGSNmodule-attribute

LLAMA_SESSION_VERSION=9module-attribute

LLAMA_STATE_SEQ_MAGIC=LLAMA_FILE_MAGIC_GGSQmodule-attribute

LLAMA_STATE_SEQ_VERSION=2module-attribute

LLAMA_VOCAB_TYPE_NONE=0module-attribute

For models without vocab

LLAMA_VOCAB_TYPE_SPM=1module-attribute

LLaMA tokenizer based on byte-level BPE with byte fallback

LLAMA_VOCAB_TYPE_BPE=2module-attribute

GPT-2 tokenizer based on byte-level BPE

LLAMA_VOCAB_TYPE_WPM=3module-attribute

BERT tokenizer based on WordPiece

LLAMA_VOCAB_TYPE_UGM=4module-attribute

T5 tokenizer based on Unigram

LLAMA_VOCAB_TYPE_RWKV=5module-attribute

RWKV tokenizer based on greedy tokenization

LLAMA_VOCAB_TYPE_PLAMO2=6module-attribute

PLaMo-2 tokenizer based on Aho-Corasick with dynamic programming

LLAMA_VOCAB_PRE_TYPE_DEFAULT=0module-attribute

LLAMA_VOCAB_PRE_TYPE_LLAMA3=1module-attribute

LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM=2module-attribute

LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER=3module-attribute

LLAMA_VOCAB_PRE_TYPE_FALCON=4module-attribute

LLAMA_VOCAB_PRE_TYPE_MPT=5module-attribute

LLAMA_VOCAB_PRE_TYPE_STARCODER=6module-attribute

LLAMA_VOCAB_PRE_TYPE_GPT2=7module-attribute

LLAMA_VOCAB_PRE_TYPE_REFACT=8module-attribute

LLAMA_VOCAB_PRE_TYPE_COMMAND_R=9module-attribute

LLAMA_VOCAB_PRE_TYPE_STABLELM2=10module-attribute

LLAMA_VOCAB_PRE_TYPE_QWEN2=11module-attribute

LLAMA_VOCAB_PRE_TYPE_OLMO=12module-attribute

LLAMA_VOCAB_PRE_TYPE_DBRX=13module-attribute

LLAMA_VOCAB_PRE_TYPE_SMAUG=14module-attribute

LLAMA_VOCAB_PRE_TYPE_PORO=15module-attribute

LLAMA_VOCAB_PRE_TYPE_CHATGLM3=16module-attribute

LLAMA_VOCAB_PRE_TYPE_CHATGLM4=17module-attribute

LLAMA_VOCAB_PRE_TYPE_VIKING=18module-attribute

LLAMA_VOCAB_PRE_TYPE_JAIS=19module-attribute

LLAMA_VOCAB_PRE_TYPE_TEKKEN=20module-attribute

LLAMA_VOCAB_PRE_TYPE_SMOLLM=21module-attribute

LLAMA_VOCAB_PRE_TYPE_CODESHELL=22module-attribute

LLAMA_VOCAB_PRE_TYPE_BLOOM=23module-attribute

LLAMA_VOCAB_PRE_TYPE_GPT3_FINNISH=24module-attribute

LLAMA_VOCAB_PRE_TYPE_EXAONE=25module-attribute

LLAMA_VOCAB_PRE_TYPE_CHAMELEON=26module-attribute

LLAMA_VOCAB_PRE_TYPE_MINERVA=27module-attribute

LLAMA_VOCAB_PRE_TYPE_DEEPSEEK3_LLM=28module-attribute

LLAMA_VOCAB_PRE_TYPE_GPT4O=29module-attribute

LLAMA_VOCAB_PRE_TYPE_SUPERBPE=30module-attribute

LLAMA_VOCAB_PRE_TYPE_TRILLION=31module-attribute

LLAMA_VOCAB_PRE_TYPE_BAILINGMOE=32module-attribute

LLAMA_VOCAB_PRE_TYPE_LLAMA4=33module-attribute

LLAMA_VOCAB_PRE_TYPE_PIXTRAL=34module-attribute

LLAMA_VOCAB_PRE_TYPE_SEED_CODER=35module-attribute

LLAMA_ROPE_TYPE_NONE=-1module-attribute

LLAMA_ROPE_TYPE_NORM=0module-attribute

LLAMA_ROPE_TYPE_NEOX=2module-attribute

LLAMA_ROPE_TYPE_MROPE=8module-attribute

LLAMA_ROPE_TYPE_VISION=24module-attribute

LLAMA_TOKEN_TYPE_UNDEFINED=0module-attribute

LLAMA_TOKEN_TYPE_NORMAL=1module-attribute

LLAMA_TOKEN_TYPE_UNKNOWN=2module-attribute

LLAMA_TOKEN_TYPE_CONTROL=3module-attribute

LLAMA_TOKEN_TYPE_USER_DEFINED=4module-attribute

LLAMA_TOKEN_TYPE_UNUSED=5module-attribute

LLAMA_TOKEN_TYPE_BYTE=6module-attribute

LLAMA_TOKEN_ATTR_UNDEFINED=0module-attribute

LLAMA_TOKEN_ATTR_UNKNOWN=1<<0module-attribute

LLAMA_TOKEN_ATTR_UNUSED=1<<1module-attribute

LLAMA_TOKEN_ATTR_NORMAL=1<<2module-attribute

LLAMA_TOKEN_ATTR_CONTROL=1<<3module-attribute

LLAMA_TOKEN_ATTR_USER_DEFINED=1<<4module-attribute

LLAMA_TOKEN_ATTR_BYTE=1<<5module-attribute

LLAMA_TOKEN_ATTR_NORMALIZED=1<<6module-attribute

LLAMA_TOKEN_ATTR_LSTRIP=1<<7module-attribute

LLAMA_TOKEN_ATTR_RSTRIP=1<<8module-attribute

LLAMA_TOKEN_ATTR_SINGLE_WORD=1<<9module-attribute

LLAMA_FTYPE_ALL_F32=0module-attribute

LLAMA_FTYPE_MOSTLY_F16=1module-attribute

LLAMA_FTYPE_MOSTLY_Q4_0=2module-attribute

LLAMA_FTYPE_MOSTLY_Q4_1=3module-attribute

LLAMA_FTYPE_MOSTLY_Q8_0=7module-attribute

LLAMA_FTYPE_MOSTLY_Q5_0=8module-attribute

LLAMA_FTYPE_MOSTLY_Q5_1=9module-attribute

LLAMA_FTYPE_MOSTLY_Q2_K=10module-attribute

LLAMA_FTYPE_MOSTLY_Q3_K_S=11module-attribute

LLAMA_FTYPE_MOSTLY_Q3_K_M=12module-attribute

LLAMA_FTYPE_MOSTLY_Q3_K_L=13module-attribute

LLAMA_FTYPE_MOSTLY_Q4_K_S=14module-attribute

LLAMA_FTYPE_MOSTLY_Q4_K_M=15module-attribute

LLAMA_FTYPE_MOSTLY_Q5_K_S=16module-attribute

LLAMA_FTYPE_MOSTLY_Q5_K_M=17module-attribute

LLAMA_FTYPE_MOSTLY_Q6_K=18module-attribute

LLAMA_FTYPE_MOSTLY_IQ2_XXS=19module-attribute

LLAMA_FTYPE_MOSTLY_IQ2_XS=20module-attribute

LLAMA_FTYPE_MOSTLY_Q2_K_S=21module-attribute

LLAMA_FTYPE_MOSTLY_IQ3_XS=22module-attribute

LLAMA_FTYPE_MOSTLY_IQ3_XXS=23module-attribute

LLAMA_FTYPE_MOSTLY_IQ1_S=24module-attribute

LLAMA_FTYPE_MOSTLY_IQ4_NL=25module-attribute

LLAMA_FTYPE_MOSTLY_IQ3_S=26module-attribute

LLAMA_FTYPE_MOSTLY_IQ3_M=27module-attribute

LLAMA_FTYPE_MOSTLY_IQ2_S=28module-attribute

LLAMA_FTYPE_MOSTLY_IQ2_M=29module-attribute

LLAMA_FTYPE_MOSTLY_IQ4_XS=30module-attribute

LLAMA_FTYPE_MOSTLY_IQ1_M=31module-attribute

LLAMA_FTYPE_MOSTLY_BF16=32module-attribute

LLAMA_FTYPE_MOSTLY_TQ1_0=36module-attribute

LLAMA_FTYPE_MOSTLY_TQ2_0=37module-attribute

LLAMA_FTYPE_GUESSED=1024module-attribute

LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED=-1module-attribute

LLAMA_ROPE_SCALING_TYPE_NONE=0module-attribute

LLAMA_ROPE_SCALING_TYPE_LINEAR=1module-attribute

LLAMA_ROPE_SCALING_TYPE_YARN=2module-attribute

LLAMA_ROPE_SCALING_TYPE_LONGROPE=3module-attribute

LLAMA_ROPE_SCALING_TYPE_MAX_VALUE=LLAMA_ROPE_SCALING_TYPE_LONGROPEmodule-attribute

LLAMA_POOLING_TYPE_UNSPECIFIED=-1module-attribute

LLAMA_POOLING_TYPE_NONE=0module-attribute

LLAMA_POOLING_TYPE_MEAN=1module-attribute

LLAMA_POOLING_TYPE_CLS=2module-attribute

LLAMA_POOLING_TYPE_LAST=3module-attribute

LLAMA_POOLING_TYPE_RANK=4module-attribute

LLAMA_ATTENTION_TYPE_UNSPECIFIED=-1module-attribute

LLAMA_ATTENTION_TYPE_CAUSAL=0module-attribute

LLAMA_ATTENTION_TYPE_NON_CAUSAL=1module-attribute

LLAMA_SPLIT_MODE_NONE=0module-attribute

LLAMA_SPLIT_MODE_LAYER=1module-attribute

LLAMA_SPLIT_MODE_ROW=2module-attribute

LLAMA_KV_OVERRIDE_TYPE_INT=0module-attribute

LLAMA_KV_OVERRIDE_TYPE_FLOAT=1module-attribute

LLAMA_KV_OVERRIDE_TYPE_BOOL=2module-attribute

LLAMA_KV_OVERRIDE_TYPE_STR=3module-attribute

Misc

llama_cpp.llama_types

Types and request signatures for OpenAI compatibility

NOTE: These types may change to match the OpenAI OpenAPI specification.

Based on the OpenAI OpenAPI specification:https://github.com/openai/openai-openapi/blob/master/openapi.yaml

JsonType=Union[None,int,str,bool,List[Any],Dict[str,Any]]module-attribute

EmbeddingUsage

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classEmbeddingUsage(TypedDict):prompt_tokens:inttotal_tokens:int
prompt_tokensinstance-attribute
total_tokensinstance-attribute

Embedding

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classEmbedding(TypedDict):index:intobject:strembedding:Union[List[float],List[List[float]]]
indexinstance-attribute
objectinstance-attribute
embeddinginstance-attribute

CreateEmbeddingResponse

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classCreateEmbeddingResponse(TypedDict):object:Literal["list"]model:strdata:List[Embedding]usage:EmbeddingUsage
objectinstance-attribute
modelinstance-attribute
datainstance-attribute
usageinstance-attribute

CompletionLogprobs

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classCompletionLogprobs(TypedDict):text_offset:List[int]token_logprobs:List[Optional[float]]tokens:List[str]top_logprobs:List[Optional[Dict[str,float]]]
text_offsetinstance-attribute
token_logprobsinstance-attribute
tokensinstance-attribute
top_logprobsinstance-attribute

CompletionChoice

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classCompletionChoice(TypedDict):text:strindex:intlogprobs:Optional[CompletionLogprobs]finish_reason:Optional[Literal["stop","length"]]
textinstance-attribute
indexinstance-attribute
logprobsinstance-attribute
finish_reasoninstance-attribute

CompletionUsage

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classCompletionUsage(TypedDict):prompt_tokens:intcompletion_tokens:inttotal_tokens:int
prompt_tokensinstance-attribute
completion_tokensinstance-attribute
total_tokensinstance-attribute

CreateCompletionResponse

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classCreateCompletionResponse(TypedDict):id:strobject:Literal["text_completion"]created:intmodel:strchoices:List[CompletionChoice]usage:NotRequired[CompletionUsage]
idinstance-attribute
objectinstance-attribute
createdinstance-attribute
modelinstance-attribute
choicesinstance-attribute
usageinstance-attribute

ChatCompletionResponseFunctionCall

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionResponseFunctionCall(TypedDict):name:strarguments:str
nameinstance-attribute
argumentsinstance-attribute

ChatCompletionResponseMessage

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionResponseMessage(TypedDict):content:Optional[str]tool_calls:NotRequired["ChatCompletionMessageToolCalls"]role:Literal["assistant","function"]# NOTE: "function" may be incorrect herefunction_call:NotRequired[ChatCompletionResponseFunctionCall]# DEPRECATED
contentinstance-attribute
tool_callsinstance-attribute
roleinstance-attribute
function_callinstance-attribute

ChatCompletionFunction

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionFunction(TypedDict):name:strdescription:NotRequired[str]parameters:Dict[str,JsonType]# TODO: make this more specific
nameinstance-attribute
descriptioninstance-attribute
parametersinstance-attribute

ChatCompletionTopLogprobToken

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionTopLogprobToken(TypedDict):token:strlogprob:floatbytes:Optional[List[int]]
tokeninstance-attribute
logprobinstance-attribute
bytesinstance-attribute

ChatCompletionLogprobToken

Bases:ChatCompletionTopLogprobToken

Source code inllama_cpp/llama_types.py
classChatCompletionLogprobToken(ChatCompletionTopLogprobToken):token:strlogprob:floatbytes:Optional[List[int]]top_logprobs:List[ChatCompletionTopLogprobToken]
tokeninstance-attribute
logprobinstance-attribute
bytesinstance-attribute
top_logprobsinstance-attribute

ChatCompletionLogprobs

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionLogprobs(TypedDict):content:Optional[List[ChatCompletionLogprobToken]]refusal:Optional[List[ChatCompletionLogprobToken]]
contentinstance-attribute
refusalinstance-attribute

ChatCompletionResponseChoice

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionResponseChoice(TypedDict):index:intmessage:"ChatCompletionResponseMessage"logprobs:Optional[ChatCompletionLogprobs]finish_reason:Optional[str]
indexinstance-attribute
messageinstance-attribute
logprobsinstance-attribute
finish_reasoninstance-attribute

CreateChatCompletionResponse

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classCreateChatCompletionResponse(TypedDict):id:strobject:Literal["chat.completion"]created:intmodel:strchoices:List["ChatCompletionResponseChoice"]usage:CompletionUsage
idinstance-attribute
objectinstance-attribute
createdinstance-attribute
modelinstance-attribute
choicesinstance-attribute
usageinstance-attribute

ChatCompletionMessageToolCallChunkFunction

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionMessageToolCallChunkFunction(TypedDict):name:Optional[str]arguments:str
nameinstance-attribute
argumentsinstance-attribute

ChatCompletionMessageToolCallChunk

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionMessageToolCallChunk(TypedDict):index:intid:NotRequired[str]type:Literal["function"]function:ChatCompletionMessageToolCallChunkFunction
indexinstance-attribute
idinstance-attribute
typeinstance-attribute
functioninstance-attribute

ChatCompletionStreamResponseDeltaEmpty

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionStreamResponseDeltaEmpty(TypedDict):pass

ChatCompletionStreamResponseDeltaFunctionCall

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionStreamResponseDeltaFunctionCall(TypedDict):name:strarguments:str
nameinstance-attribute
argumentsinstance-attribute

ChatCompletionStreamResponseDelta

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionStreamResponseDelta(TypedDict):content:NotRequired[Optional[str]]function_call:NotRequired[Optional[ChatCompletionStreamResponseDeltaFunctionCall]]# DEPRECATEDtool_calls:NotRequired[Optional[List[ChatCompletionMessageToolCallChunk]]]role:NotRequired[Optional[Literal["system","user","assistant","tool"]]]
contentinstance-attribute
function_callinstance-attribute
tool_callsinstance-attribute
roleinstance-attribute

ChatCompletionStreamResponseChoice

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionStreamResponseChoice(TypedDict):index:intdelta:Union[ChatCompletionStreamResponseDelta,ChatCompletionStreamResponseDeltaEmpty]finish_reason:Optional[Literal["stop","length","tool_calls","function_call"]]logprobs:NotRequired[Optional[ChatCompletionLogprobs]]
indexinstance-attribute
deltainstance-attribute
finish_reasoninstance-attribute
logprobsinstance-attribute

CreateChatCompletionStreamResponse

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classCreateChatCompletionStreamResponse(TypedDict):id:strmodel:strobject:Literal["chat.completion.chunk"]created:intchoices:List[ChatCompletionStreamResponseChoice]
idinstance-attribute
modelinstance-attribute
objectinstance-attribute
createdinstance-attribute
choicesinstance-attribute

ChatCompletionFunctions

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionFunctions(TypedDict):name:strdescription:NotRequired[str]parameters:Dict[str,JsonType]# TODO: make this more specific
nameinstance-attribute
descriptioninstance-attribute
parametersinstance-attribute

ChatCompletionFunctionCallOption

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionFunctionCallOption(TypedDict):name:str
nameinstance-attribute

ChatCompletionRequestResponseFormat

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestResponseFormat(TypedDict):type:Literal["text","json_object"]schema:NotRequired[JsonType]# https://docs.endpoints.anyscale.com/guides/json_mode/
typeinstance-attribute
schemainstance-attribute

ChatCompletionRequestMessageContentPartText

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestMessageContentPartText(TypedDict):type:Literal["text"]text:str
typeinstance-attribute
textinstance-attribute

ChatCompletionRequestMessageContentPartImageImageUrl

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestMessageContentPartImageImageUrl(TypedDict):url:strdetail:NotRequired[Literal["auto","low","high"]]
urlinstance-attribute
detailinstance-attribute

ChatCompletionRequestMessageContentPartImage

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestMessageContentPartImage(TypedDict):type:Literal["image_url"]image_url:Union[str,ChatCompletionRequestMessageContentPartImageImageUrl]
typeinstance-attribute
image_urlinstance-attribute

ChatCompletionRequestMessageContentPart=Union[ChatCompletionRequestMessageContentPartText,ChatCompletionRequestMessageContentPartImage]module-attribute

ChatCompletionRequestSystemMessage

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestSystemMessage(TypedDict):role:Literal["system"]content:Optional[str]
roleinstance-attribute
contentinstance-attribute

ChatCompletionRequestUserMessage

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestUserMessage(TypedDict):role:Literal["user"]content:Optional[Union[str,List[ChatCompletionRequestMessageContentPart]]]
roleinstance-attribute
contentinstance-attribute

ChatCompletionMessageToolCallFunction

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionMessageToolCallFunction(TypedDict):name:strarguments:str
nameinstance-attribute
argumentsinstance-attribute

ChatCompletionMessageToolCall

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionMessageToolCall(TypedDict):id:strtype:Literal["function"]function:ChatCompletionMessageToolCallFunction
idinstance-attribute
typeinstance-attribute
functioninstance-attribute

ChatCompletionMessageToolCalls=List[ChatCompletionMessageToolCall]module-attribute

ChatCompletionRequestAssistantMessageFunctionCall

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestAssistantMessageFunctionCall(TypedDict):name:strarguments:str
nameinstance-attribute
argumentsinstance-attribute

ChatCompletionRequestAssistantMessage

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestAssistantMessage(TypedDict):role:Literal["assistant"]content:NotRequired[str]tool_calls:NotRequired[ChatCompletionMessageToolCalls]function_call:NotRequired[ChatCompletionRequestAssistantMessageFunctionCall]# DEPRECATED
roleinstance-attribute
contentinstance-attribute
tool_callsinstance-attribute
function_callinstance-attribute

ChatCompletionRequestToolMessage

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestToolMessage(TypedDict):role:Literal["tool"]content:Optional[str]tool_call_id:str
roleinstance-attribute
contentinstance-attribute
tool_call_idinstance-attribute

ChatCompletionRequestFunctionMessage

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestFunctionMessage(TypedDict):role:Literal["function"]content:Optional[str]name:str
roleinstance-attribute
contentinstance-attribute
nameinstance-attribute

ChatCompletionRequestMessage=Union[ChatCompletionRequestSystemMessage,ChatCompletionRequestUserMessage,ChatCompletionRequestAssistantMessage,ChatCompletionRequestUserMessage,ChatCompletionRequestToolMessage,ChatCompletionRequestFunctionMessage]module-attribute

ChatCompletionRequestFunctionCallOption

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionRequestFunctionCallOption(TypedDict):name:str
nameinstance-attribute

ChatCompletionRequestFunctionCall=Union[Literal['none','auto'],ChatCompletionRequestFunctionCallOption]module-attribute

ChatCompletionFunctionParameters=Dict[str,JsonType]module-attribute

ChatCompletionToolFunction

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionToolFunction(TypedDict):name:strdescription:NotRequired[str]parameters:ChatCompletionFunctionParameters
nameinstance-attribute
descriptioninstance-attribute
parametersinstance-attribute

ChatCompletionTool

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionTool(TypedDict):type:Literal["function"]function:ChatCompletionToolFunction
typeinstance-attribute
functioninstance-attribute

ChatCompletionNamedToolChoiceFunction

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionNamedToolChoiceFunction(TypedDict):name:str
nameinstance-attribute

ChatCompletionNamedToolChoice

Bases:TypedDict

Source code inllama_cpp/llama_types.py
classChatCompletionNamedToolChoice(TypedDict):type:Literal["function"]function:ChatCompletionNamedToolChoiceFunction
typeinstance-attribute
functioninstance-attribute

ChatCompletionToolChoiceOption=Union[Literal['none','auto','required'],ChatCompletionNamedToolChoice]module-attribute

EmbeddingData=Embeddingmodule-attribute

CompletionChunk=CreateCompletionResponsemodule-attribute

Completion=CreateCompletionResponsemodule-attribute

CreateCompletionStreamResponse=CreateCompletionResponsemodule-attribute

ChatCompletionMessage=ChatCompletionResponseMessagemodule-attribute

ChatCompletionChoice=ChatCompletionResponseChoicemodule-attribute

ChatCompletion=CreateChatCompletionResponsemodule-attribute

ChatCompletionChunkDeltaEmpty=ChatCompletionStreamResponseDeltaEmptymodule-attribute

ChatCompletionChunkChoice=ChatCompletionStreamResponseChoicemodule-attribute

ChatCompletionChunkDelta=ChatCompletionStreamResponseDeltamodule-attribute

ChatCompletionChunk=CreateChatCompletionStreamResponsemodule-attribute

ChatCompletionStreamResponse=CreateChatCompletionStreamResponsemodule-attribute

ChatCompletionResponseFunction=ChatCompletionFunctionmodule-attribute

ChatCompletionFunctionCall=ChatCompletionResponseFunctionCallmodule-attribute


[8]ページ先頭

©2009-2025 Movatter.jp