Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

ImmPort: disseminating data to the public for the future of immunology

  • IMMUNOLOGY AT STANFORD UNIVERSITY
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The immunology database and analysis portal (ImmPort) system is the archival repository and dissemination vehicle for clinical and molecular datasets created by research consortia funded by the National Institute of Allergy and Infectious Diseases Division of Allergy, Immunology, and Transplantation. With nearly 100 datasets now publicly available and hundreds of downloads per month, ImmPort is an important source for raw data and protocols from clinical trials, mechanistic studies, and novel methods for cellular and molecular measurements. To facilitate data transfer, templates for data representation and standard operating procedures have also been created and are also publicly available. ImmPort facilitates transparency and reproducibility in immunology research, serves as an important resource for education, and enables newly generated hypotheses and data-driven science.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

ArticleOpen access06 February 2018

Chapter© 2018

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytometry B Clin Cytom. 2010;78(Suppl 1):S69–82. doi:10.1002/cyto.b.20554.

    Article PubMed Central PubMed  Google Scholar 

  2. Li L, Khatri P, Sigdel TK, Tran T, Ying L, Vitalone MJ, et al. A peripheral blood diagnostic test for acute rejection in renal transplantation. Am J Transplant. 2012;12(10):2710–8. doi:10.1111/j.1600-6143.2012.04253.x.

    Article PubMed Central CAS PubMed  Google Scholar 

  3. Benfield MR, Bartosh S, Ikle D, Warshaw B, Bridges N, Morrison Y, et al. A randomized double-blind, placebo controlled trial of steroid withdrawal after pediatric renal transplantation. Am J Transplant. 2010;10(1):81–8. doi:10.1111/j.1600-6143.2009.02767.x.

    Article CAS PubMed  Google Scholar 

  4. De Serres SA, Mfarrej BG, Magee CN, Benitez F, Ashoor I, Sayegh MH, et al. Immune profile of pediatric renal transplant recipients following alemtuzumab induction. J Am Soc Nephrol. 2012;23(1):174–82. doi:10.1681/ASN.2011040360.

    Article PubMed Central PubMed  Google Scholar 

  5. Harmon W, Meyers K, Ingelfinger J, McDonald R, McIntosh M, Ho M, et al. Safety and efficacy of a calcineurin inhibitor avoidance regimen in pediatric renal transplantation. J Am Soc Nephrol. 2006;17(6):1735–45. doi:10.1681/ASN.2006010049.

    Article CAS PubMed  Google Scholar 

  6. Hoerning A, Koss K, Datta D, Boneschansker L, Jones CN, Wong IY, et al. Subsets of human CD4(+) regulatory T cells express the peripheral homing receptor CXCR3. Eur J Immunol. 2011;41(8):2291–302. doi:10.1002/eji.201041095.

    Article PubMed Central CAS PubMed  Google Scholar 

  7. McDonald RA, Smith JM, Ho M, Lindblad R, Ikle D, Grimm P, et al. Incidence of PTLD in pediatric renal transplant recipients receiving basiliximab, calcineurin inhibitor, sirolimus and steroids. Am J Transplant. 2008;8(5):984–9. doi:10.1111/j.1600-6143.2008.02167.x.

    Article CAS PubMed  Google Scholar 

  8. Casale TB, Busse WW, Kline JN, Ballas ZK, Moss MH, Townley RG, et al. Omalizumab pretreatment decreases acute reactions after rush immunotherapy for ragweed-induced seasonal allergic rhinitis. J Allergy Clin Immunol. 2006;117(1):134–40. doi:10.1016/j.jaci.2005.09.036.

    Article CAS PubMed  Google Scholar 

  9. Klunker S, Saggar LR, Seyfert-Margolis V, Asare AL, Casale TB, Durham SR, et al. Combination treatment with omalizumab and rush immunotherapy for ragweed-induced allergic rhinitis: inhibition of IgE-facilitated allergen binding. J Allergy Clin Immunol. 2007;120(3):688–95. doi:10.1016/j.jaci.2007.05.034.

    Article CAS PubMed  Google Scholar 

  10. Newell EW, Sigel N, Bendall SC, Nolan GP, Davis MM. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8(+) T cell phenotypes (vol 36, pg 142, 2012). Immunity. 2013;38(1):198–9. doi:10.1016/j.immuni.2012.12.002.

    Article CAS  Google Scholar 

  11. Horowitz A, Strauss-Albee DM, Leipold M, Kubo J, Nemat-Gorgani N, Dogan OC, et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med. 2013;5(208):208ra145. doi:10.1126/scitranslmed.3006702.

    Article PubMed Central PubMed  Google Scholar 

  12. Stone JH, Merkel PA, Spiera R, Seo P, Langford CA, Hoffman GS, et al. Rituximab versus cyclophosphamide for ANCA-associated vasculitis. N Engl J Med. 2010;363(3):221–32. doi:10.1056/NEJMoa0909905.

    Article PubMed Central CAS PubMed  Google Scholar 

  13. Holdren JP. Increasing access to the results of federally funded scientific research. Executive Office of the President, Washington, DC. 2013.http://www.whitehouse.gov/sites/default/files/microsites/ostp/ostp_public_access_memo_2013.pdf. Accessed Feb 22, 2013.

  14. Shen-Orr SS, Goldberger O, Garten Y, Rosenberg-Hasson Y, Lovelace PA, Hirschberg DL et al. Towards a cytokine-cell interaction knowledgebase of the adaptive immune system. Pac Symp Biocomput. 2009.http://www.ncbi.nlm.nih.gov/pubmed/?term=19209721.

  15. Piwowar HA, Vision TJ. Data reuse and the open data citation advantage. Peer J. 2013;1:e175. doi:10.7717/peerj.175.

    Article PubMed Central PubMed  Google Scholar 

  16. Begley CG, Ellis LM. Drug development: raise standards for preclinical cancer research. Nature. 2012;483(7391):531–3. doi:10.1038/483531a.

    Article CAS PubMed  Google Scholar 

  17. Ioannidis JP, Allison DB, Ball CA, Coulibaly I, Cui X, Culhane AC, et al. Repeatability of published microarray gene expression analyses. Nat Genet. 2009;41(2):149–55. doi:10.1038/ng.295.

    Article CAS PubMed  Google Scholar 

  18. Micheel C, Nass SJ, Omenn GS, Institute of Medicine (U.S.). Committee on the review of omics-based tests for predicting patient outcomes in clinical trials. Evolution of translational omics: lessons learned and the path forward. Washington, D.C.: National Academies Press; 2012.

  19. Chen R, Sigdel TK, Li L, Kambham N, Dudley JT, Hsieh SC et al. Differentially expressed RNA from public microarray data identifies serum protein biomarkers for cross-organ transplant rejection and other conditions. PLoS Comput Biol. 2010;6(9). doi:10.1371/journal.pcbi.1000940.

  20. Kodama K, Horikoshi M, Toda K, Yamada S, Hara K, Irie J, et al. Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes. Proc Natl Acad Sci U S A. 2012;109(18):7049–54. doi:10.1073/pnas.1114513109.

    Article PubMed Central CAS PubMed  Google Scholar 

  21. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P, et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet. 2013;45(9):970–6. doi:10.1038/ng.2702.

    Article PubMed Central CAS PubMed  Google Scholar 

  22. Sirota M, Dudley JT, Kim J, Chiang AP, Morgan AA, Sweet-Cordero A, et al. Discovery and preclinical validation of drug indications using compendia of public gene expression data. Sci Transl Med. 2011;3(96):96ra77. doi:10.1126/scitranslmed.3001318.

    Article PubMed Central CAS PubMed  Google Scholar 

  23. Dudley JT, Sirota M, Shenoy M, Pai RK, Roedder S, Chiang AP, et al. Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease. Sci Transl Med. 2011;3(96):96–976. doi:10.1126/scitranslmed.3002648.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Institute of Allergy and Infectious Diseases (Bioinformatics Support Contract HHSN272201200028C). The authors thank Ashley Xia and Quan Chen at the National Institute of Allergy and Infectious Diseases for their oversight of the program. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

  1. Division of Systems Medicine, Department of Pediatrics, Stanford University School of Medicine, 1265 Welch Road MSOB X163, Stanford, CA, 94305-5415, USA

    Sanchita Bhattacharya, Sandra Andorf & Atul J. Butte

  2. Northrop Grumman Information Systems Health IT, Rockville, MD, 20850, USA

    Linda Gomes, Patrick Dunn, Patty Berger, Vince Desborough, Tom Smith, John Campbell, Elizabeth Thomson, Ruth Monteiro, Patricia Guimaraes, Bryan Walters & Jeff Wiser

  3. ESAC Inc., Rockville, MD, 20850, USA

    Henry Schaefer & Joan Pontius

  4. Lucile Packard Children’s Hospital, 725 Welch Road, Palo Alto, CA, 94304, USA

    Atul J. Butte

Authors
  1. Sanchita Bhattacharya

    You can also search for this author inPubMed Google Scholar

  2. Sandra Andorf

    You can also search for this author inPubMed Google Scholar

  3. Linda Gomes

    You can also search for this author inPubMed Google Scholar

  4. Patrick Dunn

    You can also search for this author inPubMed Google Scholar

  5. Henry Schaefer

    You can also search for this author inPubMed Google Scholar

  6. Joan Pontius

    You can also search for this author inPubMed Google Scholar

  7. Patty Berger

    You can also search for this author inPubMed Google Scholar

  8. Vince Desborough

    You can also search for this author inPubMed Google Scholar

  9. Tom Smith

    You can also search for this author inPubMed Google Scholar

  10. John Campbell

    You can also search for this author inPubMed Google Scholar

  11. Elizabeth Thomson

    You can also search for this author inPubMed Google Scholar

  12. Ruth Monteiro

    You can also search for this author inPubMed Google Scholar

  13. Patricia Guimaraes

    You can also search for this author inPubMed Google Scholar

  14. Bryan Walters

    You can also search for this author inPubMed Google Scholar

  15. Jeff Wiser

    You can also search for this author inPubMed Google Scholar

  16. Atul J. Butte

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toAtul J. Butte.

Rights and permissions

About this article

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp