Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Robust Higher Order Potentials for Enforcing Label Consistency

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

This paper proposes a novel framework for labelling problems which is able to combine multiple segmentations in a principled manner. Our method is based on higher order conditional random fields and uses potentials defined on sets of pixels (image segments) generated using unsupervised segmentation algorithms. These potentials enforce label consistency in image regions and can be seen as a generalization of the commonly used pairwise contrast sensitive smoothness potentials. The higher order potential functions used in our framework take the form of the RobustPn model and are more general than thePn Potts model recently proposed by Kohli et al. We prove that the optimalswap andexpansion moves for energy functions composed of these potentials can be computed by solving a st-mincut problem. This enables the use of powerful graph cut based move making algorithms for performing inference in the framework. We test our method on the problem of multi-class object segmentation by augmenting the conventionalcrf used for object segmentation with higher order potentials defined on image regions. Experiments on challenging data sets show that integration of higher order potentials quantitatively and qualitatively improves results leading to much better definition of object boundaries. We believe that this method can be used to yield similar improvements for many other labelling problems.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alahari, K., Kohli, P., & Torr, P. (2008). Reduce, reuse and recycle: efficiently solving multi-label MRFs. InIEEE conference on computer vision and pattern recognition.

  • Blake, A., Rother, C., Brown, M., Perez, P., & Torr, P. (2004). Interactive image segmentation using an adaptive GMMRF model. InEuropean conference on computer vision (pp. I: 428–441).

  • Borenstein, E., & Malik, J. (2006). Shape guided object segmentation. InIEEE conference on computer vision and pattern recognition (pp. 969–976).

  • Boros, E., & Hammer, P. (2002). Pseudo-boolean optimization.Discrete Applied Mathematics,123(1–3), 155–225.

    MATH MathSciNet  Google Scholar 

  • Boykov, Y., & Jolly, M. (2001). Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. InInternational conference on computer vision (pp. I: 105–112).

  • Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts.IEEE Transactions on Pattern Analysis and Machine Intelligence,23(11), 1222–1239.

    Article  Google Scholar 

  • Bray, M., Kohli, P., & Torr, P. (2006). Posecut: Simultaneous segmentation and 3d pose estimation of humans using dynamic graph-cuts. InEuropean conference on computer vision (pp. 642–655).

  • Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space analysis.IEEE Transactions on Pattern Analysis and Machine Intelligence,24(5), 603–619.

    Article  Google Scholar 

  • Felzenszwalb, P., & Huttenlocher, D. (2004). Efficient graph-based image segmentation.International Journal of Computer Vision,59(2), 167–181.

    Article  Google Scholar 

  • Flach, B. (2002).Strukturelle bilderkennung (Tech. Rep.). Universit at Dresden.

  • Freedman, D., & Drineas, P. (2005). Energy minimization via graph cuts: Settling what is possible. InIEEE conference on computer vision and pattern recognition (pp. 939–946).

  • Fujishige, S. (1991).Submodular functions and optimization. Amsterdam: North-Holland.

    MATH  Google Scholar 

  • He, X., Zemel, R., & Carreira-Perpiñán, M. (2004). Multiscale conditional random fields for image labeling. InIEEE conference on computer vision and pattern recognition (2) (pp. 695–702).

  • He, X., Zemel, R., & Ray, D. (2006). Learning and incorporating top-down cues in image segmentation. InEuropean conference on computer vision (pp. 338–351).

  • Hoiem, D., Efros, A., & Hebert, M. (2005a). Automatic photo pop-up.ACM Transactions on Graphics,24(3), 577–584.

    Article  Google Scholar 

  • Hoiem, D., Efros, A., & Hebert, M. (2005b). Geometric context from a single image. InInternational conference on computer vision (pp. 654–661).

  • Huang, R., Pavlovic, V., & Metaxas, D. (2004). A graphical model framework for coupling MRFs and deformable models. InIEEE conference on computer vision and pattern recognition (Vol. 11, pp. 739–746).

  • Ishikawa, H. (2003). Exact optimization for Markov random fields with convex priors.IEEE Transactions on Pattern Analysis and Machine Intelligence,25, 1333–1336.

    Article  Google Scholar 

  • Kohli, P., Kumar, M., & Torr, P. (2007).P3 and beyond: solving energies with higher order cliques. InIEEE conference on computer vision and pattern recognition.

  • Kohli, P., Ladicky, L., & Torr, P. (2008). Robust higher order potentials for enforcing label consistency. InCVPR.

  • Kolmogorov, V. (2006). Convergent tree-reweighted message passing for energy minimization.IEEE Transactions on Pattern Analysis and Machine Intelligence,28(10), 1568–1583.

    Article  Google Scholar 

  • Kolmogorov, V., & Zabih, R. (2004). What energy functions can be minimized via graph cuts?IEEE Transactions on Pattern Analysis and Machine Intelligence,26(2), 147–159.

    Article  Google Scholar 

  • Komodakis, N., & Tziritas, G. (2005). A new framework for approximate labeling via graph cuts. InInternational conference on computer vision (pp. 1018–1025).

  • Komodakis, N., Tziritas, G., & Paragios, N. (2007). Fast, approximately optimal solutions for single and dynamic MRFs. InCVPR.

  • Kumar, M., & Torr, P. (2008). Improved moves for truncated convex models. InProceedings of advances in neural information processing systems.

  • Kumar, M., Torr, P., & Zisserman, A. (2005). Obj cut. InIEEE conference on computer vision and pattern recognition (1) (pp. 18–25).

  • Lafferty, J., McCallum, A., & Pereira, F. (2001). Conditional random fields: Probabilistic models for segmenting and labelling sequence data. InInternational conference on machine learning (pp. 282–289).

  • Lan, X., Roth, S., Huttenlocher, D., & Black, M. (2006). Efficient belief propagation with learned higher-order Markov random fields. InEuropean conference on computer vision (pp. 269–282).

  • Lauristzen, S. (1996).Graphical models. Oxford: Oxford University Press.

    Google Scholar 

  • Lempitsky, V., Rother, C., & Blake, A. (2007). Logcut—efficient graph cut optimization for Markov random fields. InICCV.

  • Levin, A., & Weiss, Y. (2006). Learning to combine bottom-up and top-down segmentation. InEuropean conference on computer vision (pp. 581–594).

  • Lovasz, L. (1983). Submodular functions and convexity. InMathematical programming: the state of the art (pp. 235–257).

  • Orlin, J. (2007). A faster strongly polynomial time algorithm for submodular function minimization. InProceedings of integer programming and combinatorial optimization (pp. 240–251).

  • Paget, R., & Longstaff, I. (1998). Texture synthesis via a noncausal nonparametric multiscale Markov random field.IEEE Transactions on Image Processing,7(6), 925–931.

    Article  Google Scholar 

  • Potetz, B. (2007). Efficient belief propagation for vision using linear constraint nodes. InIEEE conference on computer vision and pattern recognition.

  • Rabinovich, A., Belongie, S., Lange, T., & Buhmann, J. (2006). Model order selection and cue combination for image segmentation. InIEEE conference on computer vision and pattern recognition (1) (pp. 1130–1137).

  • Ren, X., & Malik, J. (2003). Learning a classification model for segmentation. InInternational conference on computer vision (pp. 10–17).

  • Roth, S., & Black, M. (2005). Fields of experts: A framework for learning image priors. InIEEE conference on computer vision and pattern recognition (pp. 860–867).

  • Rother, C., Kolmogorov, V., & Blake, A. (2004). Grabcut: interactive foreground extraction using iterated graph cuts. InACM transactions on graphics (pp. 309–314).

  • Russell, B., Freeman, W., Efros, A., Sivic, J., & Zisserman, A. (2006). Using multiple segmentations to discover objects and their extent in image collections. InIEEE conference on computer vision and pattern recognition (2) (pp. 1605–1614).

  • Schlesinger, D., & Flach, B. (2006).Transforming an arbitrary minsum problem into a binary one (Tech. Rep. TUD-FI06-01). Dresden University of Technology, April 2006.

  • Sharon, E., Brandt, A., & Basri, R. (2001). Segmentation and boundary detection using multiscale intensity measurements. InIEEE conference on computer vision and pattern recognition (1) (pp. 469–476).

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation.IEEE Transactions on Pattern Analysis and Machine Intelligence,22(8), 888–905.

    Article  Google Scholar 

  • Shotton, J., Winn, J., Rother, C., & Criminisi, A. (2006). TextonBoost: Joint appearance, shape and context modeling for multi-class object recognition and segmentation. InEuropean conference on computer vision (pp. 1–15).

  • Tu, Z., & Zhu, S. (2002). Image segmentation by data-driven Markov chain Monte Carlo.IEEE Transactions on Pattern Analysis and Machine Intelligence,24(5), 657–673.

    Article  Google Scholar 

  • Veksler, O. (2007). Graph cut based optimization for MRFs with truncated convex priors. InCVPR.

  • Wainwright, M., Jaakkola, T., & Willsky, A. (2005). Map estimation via agreement on trees: message-passing and linear programming.IEEE Transactions on Information Theory,51(11), 3697–3717.

    Article MathSciNet  Google Scholar 

  • Wang, J., Bhat, P., Colburn, A., Agrawala, M., & Cohen, M. (2005). Interactive video cutout.ACM Transactions on Graphics,24(3), 585–594.

    Article  Google Scholar 

  • Yedidia, J., Freeman, W., & Weiss, Y. (2000). Generalized belief propagation. InNIPS (pp. 689–695).

Download references

Author information

Authors and Affiliations

  1. Microsoft Research, Cambridge, UK

    Pushmeet Kohli

  2. Oxford Brookes University, Oxford, UK

    L’ubor Ladický & Philip H. S. Torr

Authors
  1. Pushmeet Kohli
  2. L’ubor Ladický
  3. Philip H. S. Torr

Corresponding author

Correspondence toPushmeet Kohli.

Rights and permissions

About this article

Cite this article

Kohli, P., Ladický, L. & Torr, P.H.S. Robust Higher Order Potentials for Enforcing Label Consistency.Int J Comput Vis82, 302–324 (2009). https://doi.org/10.1007/s11263-008-0202-0

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp