3516Accesses
Abstract
We consider a class of smoothing methods for minimization problems where the feasible set is convex but the objective function is not convex, not differentiable and perhaps not even locally Lipschitz at the solutions. Such optimization problems arise from wide applications including image restoration, signal reconstruction, variable selection, optimal control, stochastic equilibrium and spherical approximations. In this paper, we focus on smoothing methods for solving such optimization problems, which use the structure of the minimization problems and composition of smoothing functions for the plus function (x)+. Many existing optimization algorithms and codes can be used in the inner iteration of the smoothing methods. We present properties of the smoothing functions and the gradient consistency of subdifferential associated with a smoothing function. Moreover, we describe how to update the smoothing parameter in the outer iteration of the smoothing methods to guarantee convergence of the smoothing methods to a stationary point of the original minimization problem.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alefeld G., Chen X.: A regularized projection method for complementarity problems with non-Lipschitzian functions. Math. Comput.77, 379–395 (2008)
Auslender A.: How to deal with the unbounded in optimization: theory and algorithm. Math. Program.79, 3–18 (1997)
Ben-Tal A., EI Ghaoui L., Nemirovski A.: Robust Optimization. Princeton University Press, Princeton (2009)
Bian W., Chen X.: Smoothing neural network for constrained non-Lipschitz optimization with applications. IEEE Trans. Neural Netw. Learn. Syst.23, 399–411 (2012)
Bian, W., Chen, X.: Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation. Preprint (2011)
Bian, W., Chen, X.: Smoothing SQP algorithm for non-Lipschitz optimization with complexity analysis. Preprint (2012)
Bian W., Xue X.P.: Subgradient-based neural network for nonsmooth nonconvex optimization problem. IEEE Trans. Neural Netw.20, 1024–1038 (2009)
Bruckstein A.M., Donoho D.L., Elad M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev.51, 34–81 (2009)
Burke J.V.: Descent methods for composite nondifferentiable optimization problems. Math. Program.33, 260–279 (1985)
Burke J.V., Lewis A.S., Overton M.L.: A robust gradient sampling algorithm for nonsmooth, nonconvex optimization. SIAM J. Optim.15, 751–779 (2005)
Burke J.V., Henrion D., Lewis A.S., Overton M.L.: Stabilization via nonsmooth, nonconvex optimization. IEEE Trans. Automat. Control51, 1760–1769 (2006)
Catis C., Gould N.I.M., Toint P.: On the evaluation complexity of composite function minimization with applications to nonconvex nonlinear programming. SIAM J. Optim.21, 1721–1739 (2011)
Chartrand R.: Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Proc. Lett.14, 707–710 (2007)
Chen B., Chen X.: A global and local superlinear continuation-smoothing method forP0 andR0 NCP or monotone NCP. SIAM J. Optim.9, 624–645 (1999)
Chen B., Harker P.T.: A non-interior-point continuation method for linear complementarity problems. SIAM J. Matrix Anal. Appl.14, 1168–1190 (1993)
Chen B., Xiu N.: A global linear and local quadratic noninterior continuation method for nonlinear complementarity problems based on Chen–Mangasarian smoothing functions. SIAM J. Optim.9, 605–623 (1999)
Chen C., Mangasarian O.L.: A class of smoothing functions for nonlinear and mixed complementarity problems. Math. Program.71, 51–70 (1995)
Chen X.: Smoothing methods for complementarity problems and their applications: a survey. J. Oper. Res. Soc. Japan43, 32–46 (2000)
Chen X.: A superlinearly and globally convergent method for reaction and diffusion problems with a non-Lipschitzian operator. Computing[Suppl]15, 79–90 (2001)
Chen X.: First order conditions for nonsmooth discretized constrained optimal control problems. SIAM J. Control Optim.42, 2004–2015 (2004)
Chen X., Fukushima M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res.30, 1022–1038 (2005)
Chen X., Fukushima M.: A smoothing method for a mathematical program with P-matrix linear complementarity constraints. Comput. Optim. Appl.27, 223–246 (2004)
Chen, X., Ge, D., Wang, Z., Ye, Y.: Complexity of unconstrainedL2−Lp minimization. Preprint (2011)
Chen X., Nashed Z., Qi L.: Smoothing methods and semismooth methods for nondifferentiable operator equations. SIAM J. Numer. Anal.38, 1200–1216 (2000)
Chen, X., Niu, L., Yuan, Y.: Optimality conditions and smoothing trust region Newton method for non-Lipschitz optimization. Preprint (2012)
Chen X., Qi L.: A parameterized Newton method and a quasi-Newton method for nonsmooth equations. Comput. Optim. Appl.3, 157–179 (1994)
Chen X., Qi L., Sun D.: Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math. Comput.67, 519–540 (1998)
Chen, X., Wets, R.J-B., Zhang, Y.: Stochastic variational inequalities: residual minimization smoothing/sample average approximations SIAM J. Optim. (to appear)
Chen X., Womersley R., Ye J.: Minimizing the condition number of a Gram matrix. SIAM J. Optim.21, 127–148 (2011)
Chen X., Xu F., Ye Y.: Lower bound theory of nonzero entries in solutions ofl2−lp minimization. SIAM J. Sci. Comput.32, 2832–2852 (2012)
Chen X., Ye Y.: On homotopy-smoothing methods for variational inequalities. SIAM J. Control Optim.37, 587–616 (1999)
Chen X., Zhang C., Fukushima M.: Robust solution of monotone stochastic linear complementarity problems. Math. Program.117, 51–80 (2009)
Chen X., Zhou W.: Smoothing nonlinear conjugate gradient method for image restoration using nonsmooth nonconvex minimization. SIAM J. Imaging Sci.3, 765–790 (2010)
Clarke F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)
Conn A.R., Scheinberg K., Vicente L.N.: Introduction to Derivative-Free Optimization. MPS-SIAM Book Series on Optimization. SIAM, Philadelphia (2009)
Cottle R.W., Pang J.S., Stone R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)
Daniilidis A., Sagastizbal C., Solodov M.: Identifying structure of nonsmooth convex functions by the bundle technique. SIAM J. Optim.20, 820–840 (2009)
Delage E., Ye Y.: Distributionally robust optimization under monment uncertainty with application to data-driven problems. Oper. Res.58, 595–612 (2010)
Facchinei F., Jiang H., Qi L.: A smoothing method for mathematical programs with equilibrium constraints. Math. Program.85, 107–134 (1999)
Facchinei F., Pang J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)
Fan J.: Comments on “Wavelets in Statistic: a review” by A. Antoniadis. Stat. Method. Appl.6, 131–138 (1997)
Fan J., Li R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc.96, 1348–1360 (2001)
Fang H., Chen X., Fukushima M.: Stochastic R0 matrix linear complementarity problems. SIAM J. Optim.18, 482–506 (2007)
Ferris M.: Extended mathematical programming: competition and stochasticity. SIAM News45, 1–2 (2012)
Fischer A.: A special Newton-type optimization method. Optimization24, 269–284 (1992)
Fukushima M., Luo Z.-Q., Pang J.-S.: A globally convergent sequential quadratic programming algorithm for mathematical programs with linear complementarity constraints. Comput. Optim. Appl.10, 5–34 (1998)
Fukushima M., Luo Z.-Q., Tseng P.: Smoothing functions for second-order-cone complementarity problems. SIAM J. Optim.12, 436–460 (2002)
Fukushima M., Pang J.-S.: Convergence of a smoothing continuation method for mathematical programs with complementarity constraints. In: Thera, M., Tichatschke, R. (eds) Lecture Notes in Economics and Mathematical Systems, vol. 477, pp. 99–110. Springer, Berlin (1999)
Gabriel S.A., More J.J.: Smoothing of mixed complementarity problems. In: Ferris, M.C., Pang, J.S. (eds.) Complementarity and Variational Problems: State of the Art, pp. 105–116. SIAM, Philadelphia (1997)
Garmanjani, R., Vicente, L.N.: Smoothing and worst case complexity for direct-search methods in non-smooth optimization. Preprint (2011)
Ge D., Jiang X., Ye Y.: A note on the complexity ofLp minimization. Math. Program.21, 1721–1739 (2011)
Geman D., Reynolds G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell.14, 357–383 (1992)
Gürkan G., Özge A.Y., Robinson S.M.: Sample-path solution of stochastic variational inequalities. Math. Program.84, 313–333 (1999)
Hamatani K., Fukushima M.: Pricing American options with uncertain volatility through stochastic linear complementarity models. Comput. Optim. Appl.50, 263–286 (2011)
Hastie T., Tibshirani R., Friedman J.: The Elements of Statistical Learning Data Mining, Inference, and Prediction. Springer, New York (2009)
Hayashi S., Yamashita N., Fukushima M.: A combined smoothing and regularization method for monotone second-order cone complementarity problems. SIAM J. Optim.15, 593–615 (2005)
Heinkenschloss M., KelleyC.T. Tran H.T.: Fast algorithms for nonsmooth compact fixed-point problems. SIAM J. Numer. Anal.29, 1769–1792 (1992)
Hintermueller, M., Wu, T.: Nonconvex TVq-models in image restoration: analysis and a trust-region regularization based superlinearly convergent solver. Preprint (2011)
Hiriart-Urruty J.B., Lemareéchal C.: Convex Analysis and Minimization Algorithms II: Advanced Theory and Boundle Methods. Springer, Berlin (1993)
Hu, M., Fukushima, M.: Smoothing approach to Nash equilibrium formulations for a class of equilibrium problems with shared complementarity constraints. Comput. Optim. Appl. (to appear)
Huang J., Horowitz J.L., Ma S.: Asymptotic properties of bridge estimators in sparse high-dimensional regression models. Ann. Stat.36, 587–613 (2008)
Huang J., Ma S., Xie H., Zhang C.-H.: A group bridge approach for variable selection. Biometrika96, 339–355 (2009)
Huang Z., Qi L., Sun D.: Sub-quadratic convergence of a smoothing Newton algorithm for theP0- and monotone LCP. Math. Program.99, 423–441 (2004)
Jiang H., Ralph D.: Smooth SQP methods for mathematical programs with nonlinear complementarity constraints. Comput. Optim. Appl.25, 123–150 (2002)
Jiang H., Xu H.: Stochastic approximation approaches to the stochastic variational inequality problem. IEEE. Trans. Autom. Control53, 1462–1475 (2008)
Kanzow C.: Some noninterior continuation methods for linear cornplementarity problems. SIAM J. Matrix Anal. Appl.17, 851–868 (1996)
Knight K., Fu W.J.: Asymptotics for lasso-type estimators. Ann. Stat.28, 1356–1378 (2000)
Kiwiel K.C.: Methods of Descent for Nondifferentiable Optimization, Lecture Notes in Math, vol. 1133. Springer, Berlin (1985)
Kiwiel K.C.: Convergence of the gradient sampling algorithm for nonsmooth nonconvex optimization. SIAM J. Optim.18, 379–388 (2007)
Lewis A.S., Pang C.H.J.: Lipschitz behavior of the robust regularization. SIAM, J. Control Optim.48, 3080–3104 (2010)
Lewis A.S., Overton M.L.: Eigenvalue optimization. Acta Numerica5, 149–190 (1996)
Li D., Fukushima M.: Smoothing Newton and quasi-Newton methods for mixed complementarity problems. Comput. Optim. Appl.17, 203–230 (2000)
Lin G.H., Chen X., Fukushima M.: Solving stochastic mathematical programs with equilibrium constraints via approximation and smoothing implicit programming with penalization. Math. Program.116, 343–368 (2009)
Lin G.H., Fukushima M.: Stochastic equilibrium problems and stochastic mathematical programs with equilibrium constraints: a survey. Pac. J. Optim.6, 455–482 (2010)
Luo Z-Q., Pang J-S., Ralph D., Wu S.: Exact penalization and stationarity conditions of mathematical programs with equilibrium constraints. Math. Program.75, 19–76 (1996)
Maréchal P., Ye J.J.: Optimizing condition numbers. SIAM J. Optim.20, 935–947 (2009)
Martínez J.M., Moretti A.C.: A trust region method for minimization of nonsmooth functions with linear constraints. Math. Program.76, 431–449 (1997)
Meng K., Yang X.: Optimality conditions via exact penalty functions. SIAM J. Optim.20, 3205–3231 (2010)
Mifflin R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim.15, 957–972 (1977)
Mordukhovich B.S.: Variational Analysis and Generalized Differentiation I and II. Springer, Berlin (2006)
Nesterov Y.: Smooth minimization of nonsmooth functions. Math. Program.103, 127–152 (2005)
Nesterov Y.: Smoothing technique and its applications in semidefinite optimization. Math. Program.110, 245–259 (2007)
Newey, W.K., McFadden, D.: Large sample estimation and hypothesis testing. In: Handbook of econometrics, vol. IV, pp. 2111–2245. North-Holland, Amsterdam (1994)
Nikolova M.: Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares. SIAM J. Multiscale Model. Simul.4, 960–991 (2005)
Nikolova M., Ng M.K., Zhang S., Ching W.: Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J. Imaging Sci.1, 2–25 (2008)
Nocedal J., Wright S.J.: Numerical Optimization. 2nd edn. Springer, New York (2006)
Osborne M.R.: Finite Algorithms in Optimizations in Optimization and Data Analysis. Wiley, Chichester (1985)
Polyak R.A.: A nonlinear rescaling vs. smoothing technique in convex optimization. Math. Program.92, 197–235 (2002)
Qi H.D., Liao L.Z.: A smoothing Newton method for extended vertical linear complementarity problems. SIAM J. Matrix Anal. Appl.21, 45–66 (1999)
Qi L., Chen X.: A globally convergent successive approximation method for severely nonsmooth equations. SIAM J. Control Optim.33, 402–418 (1995)
Qi L., Ling C., Tong X., Zhou G.: A smoothing projected Newton-type algorithm for semi-infinite programming. Comput. Optim. Appl.42, 1–30 (2009)
Qi L., Sun D., Zhou G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities. Math. Program.87, 1–35 (2000)
Rockafellar R.T.: A property of piecewise smooth functions. Comput. Optim. Appl.25, 247–250 (2003)
Rockafellar R.T., Wets R.J-B.: Variational Analysis. Springer, New York (1998)
Ruszczynski A., Shapiro A.: Stochastic Programming, Handbooks in Operations Research and Management Science. Elsevier, Amsterdam (2003)
Smale, S.: Algorithms for solving equations. In: Proceedings of the International Congress of Mathematicians, Berkeley, CA, pp. 172–195 (1986)
Sun J., Sun D., Qi L.: A squared smoothing Newton method for nonsmooth matrix equations and its applications in semidefinite optimization problems. SIAM J. Optim.14, 783–806 (2004)
Tassa, Y., Todorov, E.: Stochastic complementarity for local control of discontinuous dynamics. In: Proceedings of Robotics: Science and Systems (RSS) (2010)
Wright S.J.: Convergence of an inexact algorithm for composite nonsmooth optimization. IMA J. Numer. Anal.9, 299–321 (1990)
Xu H.: Sample average approximation methods for a class of stochastic variational inequality problems. Asia Pac. J. Oper. Res.27, 103–119 (2010)
Xu Z., Zhang H., Wang Y., Chang X.:L1/2 regularizer. Sci. China Ser. F-Inf Sci.53, 1159–1169 (2010)
Yuan Y.: Conditions for convergence of a trust-region method for nonsmooth optimization. Math. Program.31, 220–228 (1985)
Zang I.: A smoothing-out technique for min-max optimization. Math. Program.19, 61–71 (1980)
Zhang C., Chen X.: Smoothing projected gradient method and its application to stochastic linear complementarity problems. SIAM J. Optim.20, 627–649 (2009)
Zhang C., Chen X., Sumalee A.: Wardrop’s user equilibrium assignment under stochastic environment. Transp. Res. B45, 534–552 (2011)
Zhang C.-H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Stat.38, 894–942 (2010)
Zhou G.L., Caccetta L., Teo K.L: A superlinearly convergent method for a class of complementarity problems with non-Lipschitzian functions. SIAM J. Optim.20, 1811–1827 (2010)
Author information
Authors and Affiliations
Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
Xiaojun Chen
- Xiaojun Chen
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toXiaojun Chen.
Rights and permissions
About this article
Cite this article
Chen, X. Smoothing methods for nonsmooth, nonconvex minimization.Math. Program.134, 71–99 (2012). https://doi.org/10.1007/s10107-012-0569-0
Received:
Accepted:
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
- Nonsmooth
- Nonconvex minimization
- Smoothing methods
- Regularized minimization problems
- Eigenvalue optimization
- Stochastic variational inequality problems