Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Implicit solution function of P0 and Z matrix linear complementarity constraints

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Using the least element solution of the P0 and Z matrix linear complementarity problem (LCP), we define an implicit solution function for linear complementarity constraints (LCC). We show that the sequence of solution functions defined by the unique solution of the regularized LCP is monotonically increasing and converges to the implicit solution function as the regularization parameter goes down to zero. Moreover, each component of the implicit solution function is convex. We find that the solution set of the irreducible P0 and Z matrix LCP can be represented by the least element solution and a Perron–Frobenius eigenvector. These results are applied to convex reformulation of mathematical programs with P0 and Z matrix LCC. Preliminary numerical results show the effectiveness and the efficiency of the reformulation.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Berman A., Plemmons R.J.: Nonnegative Matrices in the Mathematical Sciences. SIAM Publisher, Philadelphia (1994)

    MATH  Google Scholar 

  2. Chen X., Fukushima M.: A smoothing method for a mathematical program with P-matrix linear complementarity constraints. Comp. Optim. Appl.27, 223–246 (2004)

    Article MathSciNet MATH  Google Scholar 

  3. Chen X., Xiang S.: Computation of error bounds for P-matrix linear complementarity problems. Math. Program. Ser. A106, 513–525 (2006)

    Article MathSciNet MATH  Google Scholar 

  4. Chen X., Xiang S.: Perturbation bounds of P-matrix linear complementarity problems. SIAM J. Optim.18, 1250–1265 (2007)

    Article MathSciNet MATH  Google Scholar 

  5. Cottle R.W., Pang J.-S., Stone R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)

    MATH  Google Scholar 

  6. Ferris M.C., Pang J.S.: Engineering and economic applications of complementarity problems. SIAM Rev.39, 669–713 (1997)

    Article MathSciNet MATH  Google Scholar 

  7. Fukushima M., Pang J.-S.: Some feasibility issues in mathematical programs with equilibrium constraints. SIAM J. Optim.8, 673–681 (1998)

    Article MathSciNet MATH  Google Scholar 

  8. Han, L., Pang, J.-S.: Non-zenoness of a class of differential quasi-variational inequalities. Math. Program., Ser. A, (2008) online

  9. Hiriart-Urruty J.-B., Lemaréchal C.: Convex Analysis and Minimization Algorithms. Springer, Berlin (1993)

    Google Scholar 

  10. Hu J., Mitchell J.E., Pang J.-S., Bennett K.P., Kunapuli G.: On the global solution of linear programs with linear complementarity constraints. SIAM J. Optim.19, 445–471 (2008)

    Article MathSciNet  Google Scholar 

  11. Kiwiel K.C.: A method of centers with approximate subgradient linearizations for nonsmooth convex optimization. SIAM J. Optim.18, 1467–1489 (2008)

    Article MathSciNet  Google Scholar 

  12. Lin G.H., Chen X., Fukushima M.: Solving stochastic mathematical programs with equilibrium constraints via approximation and smoothing implicit programming with penalization. Math. Program. Ser. B116, 343–368 (2009)

    Article MathSciNet MATH  Google Scholar 

  13. Luo Z.Q., Pang J.S., Ralph D.: Mathematical Programs with Equilibrium Constraints. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  14. Meng F., Xu H.: A regularized sample average approximation method for stochastic mathematical programs with nonsmooth equality constrants. SIAM J. Optim.17, 891–919 (2006)

    Article MathSciNet MATH  Google Scholar 

  15. Minc H.: Nonnegative Matrices. Wiley, New York (1988)

    MATH  Google Scholar 

  16. Ortega J.M., Rheinboldt W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  17. Outrata J.V., Koc̆vara M., Zowe J.: Nonsmooth Approach to Optimization Problem with Equilibrium Constraints: Theory, Application and Numerical Results. Kluwer, Dordrecht (1998)

    Google Scholar 

  18. Pang J.-S., Stewart D.E.: Differential variational inequalities. Math. Program. Ser. A113, 345–424 (2008)

    Article MathSciNet MATH  Google Scholar 

  19. Ralph D., Xu H.: Implicit smoothing and its application to optimization with piecewise smooth equality constraints. J. Optim. Theory Appl.124, 673–699 (2005)

    Article MathSciNet MATH  Google Scholar 

  20. Rockafellar T.: Convex Analysis. Princeton University Press, New Jersey (1970)

    MATH  Google Scholar 

  21. Schäfer U.: An enclosure method for free boundary problems based on a linear complementarity problem with interval data. Numer. Funct. Anal. Optim.22, 991–1011 (2001)

    Article MathSciNet MATH  Google Scholar 

  22. Solodov M.V.: A bundle method for a class of bilevel nonsmooth convex minimization problems. SIAM J. Optim.18, 242–259 (2007)

    Article MathSciNet MATH  Google Scholar 

  23. Xu H.: An implicit programming approach for a class of stochastic mathematical programs with complementarity constraints. SIAM J. Optim.16, 670–696 (2006)

    Article MathSciNet MATH  Google Scholar 

  24. Ye J.J.: Optimality conditions for optimization problems with complementarity constraints. SIAM J. Optim.9, 374–387 (1999)

    Article MathSciNet MATH  Google Scholar 

  25. Ye J.J., Zhu D.L., Zhu Q.J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim.7, 481–507 (1997)

    Article MathSciNet MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong

    Xiaojun Chen

  2. Department of Applied Mathematics and Software, Central South University, 410083, Changsha, Hunan, People’s Republic of China

    Shuhuang Xiang

Authors
  1. Xiaojun Chen

    You can also search for this author inPubMed Google Scholar

  2. Shuhuang Xiang

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toXiaojun Chen.

Additional information

X. Chen’s work was supported partly by the Research Grants Council of Hong Kong and S. Xiang’s work was supported partly by NSF of China (No.10771218).

Rights and permissions

About this article

Cite this article

Chen, X., Xiang, S. Implicit solution function of P0 and Z matrix linear complementarity constraints.Math. Program.128, 1–18 (2011). https://doi.org/10.1007/s10107-009-0291-8

Download citation

Keywords

Mathematics Subject Classification (2000)

Profiles

  1. Shuhuang XiangView author profile

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp