2348Accesses
39Citations
Abstract
Groundwater/surface-water interaction is receiving increasing focus in Africa due to its importance to ecologic systems and sustainability. In South Africa’s 1998 National Water Act (NWA), water-use licenses, including groundwater, are granted only after defining the Reserve, the amount of water needed to supply basic human needs and preserve some ecological integrity. Accurate quantification of groundwater contributions to ecosystems for successful implementation of the NWA proves challenging; many of South Africa’s aquifers are in heterogeneous and anisotropic fractured-rock settings. This paper reviews the current conceptualizations and investigative approaches regarding groundwater/surface-water interactions in the context of South African policies. Some selected pitfall experiences are emphasized. The most common approach in South Africa is estimation of average annual fluxes at the scale of fourth-order catchments (∼500 km2) with baseflow separation techniques and then subtracting the groundwater discharge rate from the recharge rate. This approach might be a good start, but it ignores spatial and temporal variability, potentially missing local impacts associated with production-well placement. As South Africa’s NWA has already been emulated in many countries including Zambia, Zimbabwe and Kenya, the successes and failures of the South African experience dealing with the groundwater/surface-water interaction will be analyzed to guide future policy directions.
Résumé
L’interaction eau souterraine/eau de surface est un centre d’intérêt croissant en Afrique étant donné son importance pour les systèmes écologiques et leur pérennité. Dans le National Water Act sud-africain de 1998 (NWA), des autorisations d’utilisation de l’eau, incluant l’eau souterraine, sont accordées seulement après évaluation de la Réserve, de la quantité d’eau requise pour satisfaire les besoins humains essentiels et préserver une certaine intégrité écologique. Une évaluation précise des contributions de l’eau souterraine aux écosystèmes pour la mise en œuvre du NWA s’avère être un défi; beaucoup d’aquifères d’Afrique du Sud sont dans des encaissants rocheux fracturés hétérogènes et anisotropes. Cet article passe en revue les concepts et approches actuels des interactions eau souterraine/eau de surface dans le contexte des politiques d’Afrique du Sud. Certaines expériences piège sélectionnées sont mises en évidence. L’approche la plus commune en Afrique du Sud est l’estimation des flux annuels moyens à l’échelle des bassins versants du quatrième ordre (∼500 km2) avec des techniques de séparation du débit de base, puis de soustraction des taux de décharge et de recharge. Cette approche pourrait être un bon début, mais elle ignore la variabilité spatiale et temporelle, éludant potentiellement les impacts locaux associés à la localisation des puits de production. Comme le NWA d’Afrique du Sud a déjà fait des émules dans de nombreux pays dont la Zambie, le Zimbabwe et le Kenya, les succès et les échecs de l’expérience sud-africaine concernant l’interaction eau souterraine/eau de surface seront analysés pour guider les orientations de la politique future.
Resumen
La interacción agua subterránea/agua superficial está recibiendo una creciente atención en África debido a su importancia en los sistema ecológicos y su sustentabilidad. En Sudáfrica, según la Ley Nacional de Agua (NWA) de 1998, las licencias de uso del agua, incluidas las aguas subterráneas, sólo se conceden después de definir la Reserva, que es la cantidad de agua necesaria para abastecer las necesidades humanas básicas y para preservar la integridad ecológica. La cuantificación precisa de la contribución del agua subterránea a los ecosistemas para la implementación exitosa de la NWA resulta difícil, ya que muchos de los acuíferos de Sudáfrica presentan la configuración heterogénea y anisotrópica en rocas fracturadas. En este documento se realiza un revisión de los conceptos y enfoques actuales de la investigación de la interacción aguas subterráneas/aguas superficiales en el contexto de las políticas de Sudáfrica. Se destacan algunas experiencias seleccionadas con las dificultades encontradas. El enfoque más común en Sudáfrica es la estimación de los flujos anuales promedio en cuencas de drenaje de cuarto orden (∼500 km2) utilizando las técnicas de separación del flujo de base y luego restando la tasa de descarga del agua subterránea a la tasa de recarga. Este enfoque podría ser un buen comienzo, pero no tiene en cuenta la variabilidad espacial y temporal, faltando los impactos locales asociados a la ubicación de los pozos de producción. Como la NWA de Sudáfrica ha sido emulada en muchos países, incluyendo Zambia, Zimbabwe, Kenia, los éxitos y fracasos de la experiencia de Sudáfrica sobre la interacción aguas subterráneas/aguas superficiales deberán ser analizados para guiar las futuras orientaciones políticas.
Resumo
A interacção água subterrânea/água superficial recebe cada vez maior atenção em África, devido à sua importância para os sistemas ecológicos e para a sustentabilidade. Na África do Sul, no Acto Nacional da Água (NWA) de 1998, as licenças de uso da água, incluindo a água subterrânea, são garantidas apenas depois de definidas as Reservas, a quantidade de água necessária para suprimir as necessidades humanas básicas e a preservação de alguma integridade ecológica. A quantificação acurada das contribuições da água subterrânea para os ecossistemas para uma aplicação com sucesso da implementação do NWA provou-se ser desafiadora; muitos dos aquíferos situam-se em meios heterogéneos e anisotrópicos, em rochas fracturadas. Este documento revê a conceptualização corrente e os processos de investigação que têm sido aplicados às interacções águas subterrâneas/águas superficiais no contexto das políticas Sul-Africanas. Algumas experiências seleccionadas são enfatizadas. A aproximação mais comum na Áfria do Sul é a estimação dos fluxos anuais médios à escala da bacia de quarta ordem (∼500 km2), utilizando técnicas de separação do fluxo de base e subtraindo então a descarga subterrânea da taxa de recarga. Esta aproximação pode ser um bom começo, mas ignora a variabilidade espacial e temporal, negligenciando potencialmente os impactes locais associados à exploração de campos de captações. Como o NWA Sul-Africano já foi emulado por muitos outros países, incluindo a Zâmbia, o Zimbabué e o Quénia, os sucessos e insucessos da experiência Sul-Africana ao lidar com as interacções águas subterrâneas/águas superficiais serão analisadas, para guiar as direcções políticas futuras.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Allen DJ, Darling WG, Gooddy DC, Lapworth DJ, Newell AJ, Williams AT, Allen D, Abesser C (2010) Interaction between groundwater, the hyporheic zone and a Chalk stream: a case study from the River Lambourn, UK. Hydrogeol J 18:1125–1141
Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. US Geol Surv Circ 1186, 79 pp
Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968
Batelaan O, De Smedt F, Triest L (2003) Regional groundwater discharge: phreatophyte mapping, groundwater modeling and impact analysis of land-use change. J Hydrol 275(1–2):86–108
Blasch KW, Bryson JR (2007) Distinguishing sources of ground water recharge by using δ2H and δ18O. Ground Water 45(3):294–308
Cey EE, Rudolph DL, Parkin GW, Aravena R (1998) Quantifying groundwater discharge to a small perennial stream in southern Ontario, Canada. J Hydrol 210:21–37
Conant BJ (2004) Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water 42(2):243–257
Constantz J, Cox MH, Sarma L, Mendez G (2003a) The Santa Clara River: the last natural river of Los Angeles. In: Stonestrom DA, Constantz J (eds) Heat as a tool for studying the movement of ground water near streams. US Geol Surv Circ 1260, pp 21–27
Constantz J, Cox MH, Su GW (2003b) Comparison of heat and bromide as ground water tracers near streams. Ground Water 41(5):647–656
Criss RE, Davisson ML (1996) Isotopic imaging of surface water/groundwater interactions, Sacramento Valley, California. J Hydrol 178:205–222
de Vries, JJ (2000) Groundwater level fluctuations: the pulse of the aquifer. Paper presented at “Evaluation and Protection of Groundwater Resources” Conference, Wageningen, The Netherlands, 16 pp
Dennis I (2008) Groundwater Reserve Determination for the Thukela Catchment. Inception report, Project number WP9437/3. Department of Water Affairs and Forestry, Pretoria, South Africa
DWAF (1997) White paper on a national water policy for South Africa. Department of Water Affairs and Forestry, Pretoria, South Africa
DWAF (2003) Resource directed measures, module 1: introductory module. Department of Water Affairs and Forestry, Pretoria, South Africa
DWAF (2004) National water resource strategy, 1st edn. Department of Water Affairs and Forestry, Pretoria, South Africa
DWAF (2005) Groundwater resource assessment, phase II: methodology. Groundwater-surface water interactions. Department of Water Affairs and Forestry, Pretoria, South Africa
Funke N, Nortje K, Findlater K, Burns M, Turton A, Weaver A, Hattingh H (2007) Redressing inequality, South Africa’s new water policy. Environment 49(3):10–23
Gardner KM (1999) The importance of surface water/groundwater interactions. Environmental Protection Agency, Seattle, WA, 18 pp
Genereux DP, Jordon M (2006) Interbasin groundwater flow and groundwater interaction with surface water in a lowland rainforest, Costa Rica: a review. J Hydrol 320:385–399
Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyporheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13:98–111
Harris J, van Vliet HR, MacKay HM (1999) Water resource quality policy: the approach adopted by the Department of Water Affairs and Forestry under the Water Law principles. Water Sci Technol 29(10–11):31–37
Healy RW, Ronan AD (1996) Documentation of computerprogram VS2DH for simulation of energy transport invariably saturated porous media: modification of the U.S. Geological Survey’s computer program VS2DT. US Geol Surv Water Resour Invest Rep 4230
Herold CE (1980) A model to compute on a monthly basis diffuse salt loads associated with runoff. WRCPWVS project, HRU Report No. 1/80, University of the Witwatersrand, Witwatersrand, South Africa
Hughes DA, Hannart P, Watkins D (2003) Continuous baseflow separation from time series of daily and monthly streamflow data. Water SA 29(1):43–48
Hunt RJ, Coplen TB, Haas NL, Saad DA, Borchardt MA (2005) Investigating surface water-well interaction using stable isotope ratios of water. J Hydrol 302:154–172
Hunt RJ, Strand M, Walder JF (2006) Measuring groundwater-surface water interaction and its effect on wetland stream benthic productivity, Trout Lake watershed, northern Wisconsin, USA. J Hydrol 320:370–384
Kelbe BE, Germishuyse T (2000) The interaction between coastal lakes and the surrounding aquifer. In: Sililo et al (eds) Groundwater: past achievements and future challenges. Balkema, Dordrecht, The Netherlands
Kipp KL Jr (1997) Guide to the revised heat and solute transport simulator: HST3D. US Geol Surv Water Resour Invest Rep 97–4157
Klemes V (1983) Conceptualisation and scale in hydrology. In: Rodriguez-Iturbe I, Gupta VK (eds) Scale problems in hydrology. J Hydrol 65:1–23
Lawson M, Ballentine CJ, Polya DA, Boyce AJ, Mondal D, Chatterjee D, Majumder S, Biswas A (2008) The geochemical and isotopic composition of ground waters in West Bengal: tracing ground-surface water interaction and its role in arsenic release. Mineral Mag 72(1):441–444
Le Maitre DC, Colvin C (2008) Assessment of the contribution of groundwater discharges to rivers using monthly flow statistics and flow seasonality. Water South Africa 34(5):549–564
Le Maitre DC, Scott DF, Colvin C (1999) A review of information on interactions between vegetation and groundwater. Water South Africa 25(2):137–152
Le Maitre DC, Scott DF, Colvin C (2000) Information on interactions between groundwater and vegetation relevant to South African conditions: a review. In: Sililo et al (eds) Groundwater: past achievements and future challenges. Balkema, Dordrecht, The Netherlands
Lee DR, Cherry JA (1978) A field exercise on groundwater flow using seepage meters and mini-piezometers. J Geol Edu 27:6–10
Levy J, Birck MD, Mutiti S, Kilroy KC, Windeler B, Idris O, Allen LN (2011) The impact of storm events on a riverbed system and its hydraulic conductivity at a site of induced infiltration. J Environ Manage 92:1960–1971
Libelo EL, MacIntyre WG (1994) Effects of surface-water movement on seepage-meter measurements of flow through the sediment-water interface. Appl Hydrogeol 4:49–54
MacKay H (2000) Moving towards sustainability: the ecological Reserve and its role in implementation of South Africa’s water policy. Proc. of the World Bank Water Week Conf., Washington, DC, April 2000
McCarthy TS (2006) Groundwater in the wetlands of the Okavango Delta, Botswana, and its contribution to the structure and function of the ecosystem. J Hydrol 320:264–282
McCartney MP, Acreman MC, Bergkamp G (2000) Freshwater ecosystem management and environmental security. Background paper to Vision for Water and Nature Workshop, San Jose (Costa Rica), 20–22 June 1999, IUCN, Gland, Switzerland
McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations, Book 6, Chapt. A1. US Geological Survey, Reston, VA
McKune C (2009) South Africa water reserves are declining – study. IOL on-line news,www.iol.co.za/SAwaterprobs-news.htm.. Cited May 2010
Midgley DC, Pitman WV, Middleton BJ (1994) The surface water resources of South Africa 1990, Vols 1–6. report nos. 298/1.1/94–298/6.1/94, Water Research Commission, Pretoria, South Africa
Murdoch LC, Kelly SE (2003) Factors affecting the performance of conventional seepage meters. Water Resour Res 39(6):1–10. doi:10.1029/2002WR001347
Myette CF, Johnson DG, Olimpio JC (1987) Area of influence and zone of contribution to superfund site wells G and H, Woburn, Massachusetts. US Geol Surv Water Resour Invest Rep 87–4100, 86 pp
Nathan RJ, McMahon TA (1990) Evaluation of automated techniques for base flow and recession analyses. Water Resour Res 26(7):1465–1473
Oxtobee JPA, Novakowski K (2002) A field investigation of groundwater/surface water interaction in a fractured bedrock environment. J Hydrol 269:169–193
Parsons R (2009a) Is Groenvlei really fed by groundwater discharged from the Table Mountain Group (TMG) aquifer? Water SA 35(5):657–662
Parsons R (2009b) Quantifying groundwater’s role in sustaining Groenvlei, a shallow lake in the Southern Cape Region of South Africa. International Association of Hydrological Sciences Publication 320. IAHS, Wallingford, UK
Parsons R, Wentzel J (2007) Groundwater resource directed measures manual. WRC report no. TT 299/07. Water Resources Commission, Pretoria, South Africa
Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard KL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime: a paradigm for river conservation and restoration. Bioscience 47:769–784
Postel S, Richter B (2003) Rivers for life. Island Press, Washington, DC, 253 pp
Praamsma TW, Novakowski K (2006) Using δ18O and δD to investigate complex groundwater-surface water interaction and recharge in a gneissic terrain, Perth, Ontario. Geol Soc Am Abstr 38(7):232
Rawlins BK, Kelbe BE (1998) Groundwater modelling of the impact of commercial forestry on an ecologically sensitive coastal lake. Hydrology in a Changing Environment: Proceeding of the British Hydrological Society International Conference, Exeter, UK, July, 1998
Republic of South Africa (RSA) (1998) National Water Act No. 36 of 1998. Government Printer, Pretoria, South Africa
Republic of South Africa (RSA) (1997) Water Services Act No. 108 of 1997, Government Printer, Pretoria, South Africa
Roberts J (2010) South Africa water demand ‘will exceed supply by 2025’. Mail Guardian Online,http://mg.co.za/article/2010-02-04-sa-water-demand-will-exceed-supply-by-2025. Cited 7 February 2010
Roets W, Xu Y, Raitt L, Brendonck L (2008a) Groundwater discharges to aquatic ecosystems associated with the Table Mountain Group (TMG) aquifer: a conceptual model. Water SA 34(1):77–88
Roets W, Xu Y, Raitt L, El-Kahloun M, Meire P, Calitz F, Batelaan O, Anibas C, Paridaens K, Vandenbroucke T, Verhoest NEC, Brendonck L (2008b) Determining discharges from the Table Mountain Group (TMG) aquifer to wetlands in the Southern Cape. Hydrobiologia 607:175–186
SA-Venues.com (2001) South Africa weather and climate.http://www.sa-venues.com/no/weather.htm. Cited 14 July 2011
Schreiner B, van Koppen B (2003) Policy and law for addressing poverty, race and gender in the water sector: the case of South Africa. Water Policy 5:489–501
Schulze RE, Maharaj M, Lynch SD, Howe BJ, Melvil-Thompson B (1997) South African atlas of agrohydrology and climatology. WRC report, TT82/96, ACRU report 46, Water Research Commission, Pretoria, South Africa, 276 pp
Seward P (2010) Challenges facing environmentally sustainable ground water use in South Africa. Ground Water 48(2):239–245
Seward P, Xu Y, Brendonck L (2006) Sustainable groundwater use, the capture principle and adaptive management. Water SA 32(4):473–482
Shaw RD, Prepas EE (1990) Groundwater-lake interactions: I, accuracy of seepage meter estimates of lake seepage. J Hydrol 119:105–120
Shedlock RJ, Wilcox DA, Thompson TA, Cohen DA (1993) Interactions between ground water and wetlands, southern shore of Lake Michigan, USA. J Hydrol 141:127–155
Silliman SE, Booth DF (1993) Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. J Hydrol 146:131–148
Smakhtin VU (2001a) Low flow hydrology: a review. J Hydrol 240:147–186
Smakhtin VU (2001b) Estimating continuous monthly baseflow time series and their possible applications in the context of the ecological reserve. Water SA 27:213–217
Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235(1–2):27–43
Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67
Space ML, Ingraham NL, Hess JW (1991) The use of stable isotopes in quantifying groundwater discharge to a partially diverted creek. J Hydrol 129:175–193
Turner JV, Townley LR (2006) Determination of groundwater flow-through regimes of shallow lakes and wetlands from numerical analysis of stable isotope and chloride tracer distribution patterns. J Hydrol 320:451–483
Tetzlaff D, Soulsby C (2008) Sources of baseflow in larger catchments: using tracers to develop a holistic understanding of runoff generation. J Hydrol 359:287–302
van Wyk E, Breen CM, Roux DJ, Rogers KH, Sherwill T, van Wilgen BW (2006) The ecological reserve: towards a common understanding for river management in South Africa. Water SA 32(3):403–410
Vetger JR (1995) An explanation of a set of national groundwater maps. WRC report TT 74/95. Water Research Commission, Pretoria, South Africa
Winde F, Wade P, van der Walt IJ (2004) Gold tailings as a source of waterborne uranium contamination of streams: the Koekemoerspruit (Klerksdorp goldfield, South Africa) as a case study. Part I of III: Uranium migration along the aqueous pathway. Water SA 30(2):219–225
Winter TC, Harvey JW, Franke OL, Alley WM (1998) Groundwater and surface water, a single resource. US Geol Surv Circ 1139
Woessner WW, Sullivan KE (1984) Results of seepage meter and mini-piezometer study, Lake Mead, Nevada. Ground Water 22(5):561–568
Woodford A, Rosewarne P, Girman J (2005) How much groundwater does South Africa have? Report for the Groundwater Phase 2 Project, Department of Water Affairs and Forestry, Pretoria, South Africa.www.srk.co.uk/groundwater/PDFs/1_A_Woodford.pdf. Cited May 2010
Wright KA, Xu Y (2000) A water balance approach to the sustainable management of groundwater in South Africa. Water South Africa 26(2):167–170
Xu Y, Braune E, Colvin C, Le Maitre D, Pietersen K, Hatton T (2000) Comprehensive determination of the resource directed measures for groundwater. In: Sililo et al (eds) Groundwater: past achievements and future challenges. Balkema, Dordrecht, The Netherlands
Xu Y, Titus R, Holness SD, Zhang J, van Tonder GJ (2002) A hydromorphological approach to quantification of groundwater discharge to streams in South Africa. Water SA 28(4):375–380
Xu Y, Duah A, Kanyerere T, Seward P (2008) Review of the DWAF RDM report entitled “Groundwater Reserve Determination for the Thukela Catchment, Inception Report” by Ingrid Dennis. Project no. WP9437/3, Institute for Groundwater Studies, University of the Free State, Bloemfontein,South Africa
Zondlo F (1998) Identification of subaqueous groundwater discharge to large scale surface water bodies, East Tennessee Technology Park site, DOE Oak Ridge Reservation, Oak Ridge, Tennessee, MSc thesis, University of Tennessee at Knoxville, USA, 258 pp
Acknowledgements
We would like to thank the Fulbright US Scholar Program within the US Department of State and the Bureau of Educational and Cultural Affairs for providing the opportunity for the extended collaboration of the authors. Partial support by VLIR (the Flemish Interuniversity Council and NUFU (the Norwegian Programme for Development, Research and Education) projects granted to the UNESCO Chair in Hydrogeology is sincerely acknowledged. Thanks also to Naomi Levy for her valuable editing.
Author information
Authors and Affiliations
Department of Geology and Environmental Earth Science, Miami University, 114 Shideler Hall, Oxford, OH, 45056, USA
Jonathan Levy
Department of Earth Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, Republic of South Africa
Yongxin Xu
- Jonathan Levy
Search author on:PubMed Google Scholar
- Yongxin Xu
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toJonathan Levy.
Rights and permissions
About this article
Cite this article
Levy, J., Xu, Y. Review: Groundwater management and groundwater/surface-water interaction in the context of South African water policy.Hydrogeol J20, 205–226 (2012). https://doi.org/10.1007/s10040-011-0776-4
Received:
Accepted:
Published:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative


