2565Accesses
Abstract
Like most evolutionary algorithms, particle swarm optimization (PSO) usually requires a large number of fitness evaluations to obtain a sufficiently good solution. This poses an obstacle for applying PSO to computationally expensive problems. This paper proposes a two-layer surrogate-assisted PSO (TLSAPSO) algorithm, in which a global and a number of local surrogate models are employed for fitness approximation. The global surrogate model aims to smooth out the local optima of the original multimodal fitness function and guide the swarm to fly quickly to an optimum or the global optimum. In the meantime, a local surrogate model constructed using the data samples near each particle is built to achieve a fitness estimation as accurate as possible. The contribution of each surrogate in the search is empirically verified by experiments on uni- and multi-modal problems. The performance of the proposed TLSAPSO algorithm is examined on ten widely used benchmark problems, and the experimental results show that the proposed algorithm is effective and highly competitive with the state-of-the-art, especially for multimodal optimization problems.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.

















Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Abou El-Ela A, Fetouh T, Bishr M, Saleh R (2008) Power systems operation using particle swarm optimization technique. Electr Power Syst Res 78(11):1906–1913
Acar E, Rais-Rohani M (2009) Ensemble of metamodels with optimized weight factors. Struct Multidiscip Optim 37(3):279–294
Bird S, Li X (2010) Improving local convergence in particle swarms by fitness approximation using regression. In: Computational intelligence in expensive optimization problems. Adaptation learning and optimization, vol 2. Springer, Berlin, Heidelberg, New York, pp 265–293
Buche D, Schraudolph NN, Koumoutsakos P (2005) Accelerating evolutionary algorithms with gaussian process fitness function models. IEEE Trans Syst Man Cybern Part C Appl Rev 35(2):183–194
Clerc M, Kennedy J (2002) The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput 6(1):58–73
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, pp 39–43
Eberhart RC, Shi Y (2000) Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 congress on evolutionary computation, vol 1, pp 84–88
Farina M (2002) A neural network based generalized response surface multiobjective. In: Proceedings of the 2002 congress on evolutionary computation, vol 1, pp 956–961
Fonseca LG, Lemonge AC, Barbosa HJ (2012) A study on fitness inheritance for enhanced efficiency in real-coded genetic algorithms. In: Proceedings of the 2012 IEEE congress on evolutionary computation (CEC), pp 1–8
Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of surrogates. Struct Multidiscip Optim 33(3):199–216
He S, Prempain E, Wu Q (2004) An improved particle swarm optimizer for mechanical design optimization problems. Eng Optim 36(5):585–605
Hendtlass T (2007) Fitness estimation and the particle swarm optimisation algorithm. In: Proceedings of the IEEE congress on evolutionary computation, pp 4266–4272
Jin Y, Sendhoff B (2004) Reducing fitness evaluations using clustering techniques and neural network ensembles. In: Proceedings of the genetic and evolutionary computation (GECCO 2004). Lecture notes in computer science, vol 3102. Springer, New York, pp 688– 699
Jin Y, Olhofer M, Sendhoff B (2002) A framework for evolutionary optimization with approximate fitness. IEEE Trans Evol Comput 6(5):481–494
Jin Y (2005) A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9(1):3–12
Joseph VR, Hung Y, Sudjianto A (2008) Blind kriging: a new method for developing metamodels. J Mech Des 130(3):031102.1– 031102.8
Kattan A, Galvan E (2012) Evolving radial basis function networks via gp for estimating fitness values using surrogate models. In: Proceedings of the 2012 IEEE congress on evolutionary computation (CEC), pp 1–7
Lian Y, Liou M-S (2005) Multiobjective optimization using coupled response surface model. AIAA J 43(6):1316–1325
Lim D, Jin Y, Ong Y-S, Sendhoff B (2010) Generalizing surrogate-assisted evolutionary computation. IEEE Trans Evol Comput 14(3):329–355
Liu B, Zhang Q, Gielen G (2014) A Gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive optimization problems. IEEE Trans Evol Comput 18(2):180–192
Lu J, Li B, Jin Y (2013) An evolution strategy assisted by an ensemble of local gaussian process models. In: Proceedings of the fifteenth annual conference on genetic and evolutionary computation conference, ACM, pp 447–454
Lu X, Tang K, Yao X (2011) Classification-assisted differential evolution for computationally expensive problems. In: Proceedings of the 2011 IEEE congress on evolutionary computation (CEC), pp 1986–1993
Ong YS, Nair PB, Keane AJ, Wong KW (2004) Surrogate-assisted evolutionary optimization frameworks for high-fidelity engineering design problems. In: Jin Y (ed) Knowledge incorporation in evolutionary computation. Studies in fuzziness and soft computing series. Springer, pp 307–331
Ong YS, Nair PB, Keane AJ (2003) Evolutionary optimization of computationally expensive problems via surrogate modeling. AIAA J 41(4):687–696
Ong Y-S, Nair PB, Lum KY (2006) Max-min surrogate-assisted evolutionary algorithm for robust design. IEEE Trans Evol Comput 10(4):392–404
Parno M, Hemker T, Fowler K (2012) Applicability of surrogates to improve efficiency of particle swarm optimization for simulation-based problems. Eng Optim 44(5):521–535
Praveen C, Duvigneau R (2009) Low cost pso using metamodels and inexact preevaluation: application to aerodynamic shape design. Comput Methods Appl Mech Eng 198(9):1087–1096
Ratle A (2001) Kriging as a surrogate fitness landscape in evolutionary optimization. AI EDAM 15(01):37–49
Regis RG (2014) Particle swarm with radial basis function surrogates for expensive blackbox optimization. J Comput Sci 5(1):12–23
Reyes-Sierra M, Coello CAC (2005) A study of fitness inheritance and approximation techniques for multi-objective particle swarm optimization. In: Proceedings of the 2005 IEEE congress on evolutionary computation, vol 1, pp 65–72
Sha D, Hsu C-Y (2008) A new particle swarm optimization for the open shop scheduling problem. Comput Oper Res 35(10):3243–3261
Shi Y, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings of the 1998 IEEE international conference on evolutionary computation, IEEE world congress on computational intelligence, pp 69–73
Smith RE, Dike BA, Stegmann SA (1995) Fitness inheritance in genetic algorithms. In: Proceedings of the 1995 ACM symposium on applied computing, pp 345–350
Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of the 1996 biennial conference of the North American Fuzzy Information Processing Society, NAFIPS, pp 519–523
Suganthan PN, Hansen N, Liang JJ, Deb K, Chen Y, Auger A, Tiwari S (2005) Problem definitions and evaluation criteria for the cec 2005 special session on realparameter optimization. Technical Report, Nanyang Technological University, Singapore and KanGAL Report #2005005, IIT Kanpur, India
Sun C, Zeng J, Pan J, Jin Y (2013) Similarity-based evolution control for fitness estimation in particle swarm optimization. In: Proceedings of the 2013 IEEE symposium on computational intelligence in dynamic and uncertain environments (CIDUE), pp 1–8
Sun C, Zeng J, Pan J, Xue S, Jin Y (2012) A new fitness estimation strategy for particle swarm optimization. Inf Sci 221:355–370
Sun X, Gong D, Jin Y, Chen S (2013) A new surrogate-assisted interactive genetic algorithm with weighted semisupervised learning. IEEE Trans Cybern 43(2):685–698
Tang Y, Chen J, Wei J (2013) A surrogate-based particle swarm optimization algorithm for solving optimization problems with expensive black box functions. Eng Optim 45(5):557–576
Tenne Y, Armfield SW (2009) A framework for memetic optimization using variable global and local surrogate models. Soft Comput 13(8–9):781–793
Ulmer H, Streichert F, Zell A (2003) Evolution strategies assisted by Gaussian processes with improved preselection criterion. In: Proceedings of the 2003 congress on evolutionary computation (CEC’03), vol 1, pp 692–699
Zhou Z, Ong YS, Nguyen MH, Lim D (2005) A study on polynomial regression and gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm. In: Proceedings of the 2005 IEEE congress on evolutionary computation, vol 3, pp 2832–2839
Zhou Z, Ong YS, Nair PB, Keane AJ, Lum KY (2007) Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Trans Syst Man Cybern Part C Appl Rev 37(1):66–76
Acknowledgments
This work was supported in part by Youth Foundation of Shanxi Province of China under Grant No. 2011021019-3, the Doctoral Foundation of Taiyuan University of Science and Technology under Grant No. 20122010, and the State Key Laboratory of Software Engineering, Nanjing University, China, Project No. KFKT2013A05.
Author information
Authors and Affiliations
Complex System and Computational Intelligence Laboratory, Taiyuan University of Science and Technology, Taiyuan, 030024, Shanxi, China
Chaoli Sun & Jianchao Zeng
Department of Computing, University of Surrey, Guildford, GU2 7XH, UK
Yaochu Jin
National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 200093, China
Yang Yu
- Chaoli Sun
You can also search for this author inPubMed Google Scholar
- Yaochu Jin
You can also search for this author inPubMed Google Scholar
- Jianchao Zeng
You can also search for this author inPubMed Google Scholar
- Yang Yu
You can also search for this author inPubMed Google Scholar
Corresponding author
Correspondence toChaoli Sun.
Additional information
Communicated by Y. Jin.
Rights and permissions
About this article
Cite this article
Sun, C., Jin, Y., Zeng, J.et al. A two-layer surrogate-assisted particle swarm optimization algorithm.Soft Comput19, 1461–1475 (2015). https://doi.org/10.1007/s00500-014-1283-z
Published:
Issue Date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative
Keywords
Profiles
- Yaochu JinView author profile