Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Combined immunotherapy withListeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer

  • Original article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Radiation therapy (RT) is an integral part of prostate cancer treatment across all stages and risk groups. Immunotherapy using a live, attenuated,Listeria monocytogenes-based vaccines have been shown previously to be highly efficient in stimulating anti-tumor responses to impact on the growth of established tumors in different tumor models. Here, we evaluated the combination of RT and immunotherapy usingListeria monocytogenes-based vaccine (ADXS31-142) in a mouse model of prostate cancer. Mice bearing PSA-expressing TPSA23 tumor were divided to 5 groups receiving no treatment, ADXS31-142, RT (10 Gy), control Listeria vector and combination of ADXS31-142 and RT. Tumor growth curve was generated by measuring the tumor volume biweekly. Tumor tissue, spleen, and sera were harvested from each group for IFN-γ ELISpot, intracellular cytokine assay, tetramer analysis, and immunofluorescence staining. There was a significant tumor growth delay in mice that received combined ADXS31-142 and RT treatment as compared with mice of other cohorts and this combined treatment causes complete regression of their established tumors in 60 % of the mice. ELISpot and immunohistochemistry of CD8+ cytotoxic T Lymphocytes (CTL) showed a significant increase in IFN-γ production in mice with combined treatment. Tetramer analysis showed a fourfold and a greater than 16-fold increase in PSA-specific CTLs in animals receiving ADXS31-142 alone and combination treatment, respectively. A similar increase in infiltration of CTLs was observed in the tumor tissues. Combination therapy with RT and Listeria PSA vaccine causes significant tumor regression by augmenting PSA-specific immune response and it could serve as a potential treatment regimen for prostate cancer.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Kuban DA, Tucker SL, Dong L, Starkschall G, Huang EH, Cheung MR, Lee AK, Pollack A (2008) Long-term results of the M. D. Anderson randomized dose-escalation trial for prostate cancer. Int J Radiat Oncol Biol Phys 70(1):67–74. doi:10.1016/j.ijrobp.2007.06.054

    Article PubMed  Google Scholar 

  2. Kupelian PA, Potters L, Khuntia D, Ciezki JP, Reddy CA, Reuther AM, Carlson TP, Klein EA (2004) Radical prostatectomy, external beam radiotherapy <72 Gy, external beam radiotherapy > or = 72 Gy, permanent seed implantation, or combined seeds/external beam radiotherapy for stage T1-T2 prostate cancer. Int J Radiat Oncol Biol Phys 58(1):25–33

    Article PubMed  Google Scholar 

  3. Tollefson MK, Leibovich BC, Slezak JM, Zincke H, Blute ML (2006) Long-term prognostic significance of primary Gleason pattern in patients with Gleason score 7 prostate cancer: impact on prostate cancer specific survival. J Urol 175(2):547–551. doi:10.1016/S0022-5347(05)00152-7

    Article PubMed  Google Scholar 

  4. Bolla M, Collette L, Blank L, Warde P, Dubois JB, Mirimanoff RO, Storme G, Bernier J, Kuten A, Sternberg C, Mattelaer J, Lopez Torecilla J, Pfeffer JR, Lino Cutajar C, Zurlo A, Pierart M (2002) Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 360(9327):103–106

    Article PubMed CAS  Google Scholar 

  5. D’Amico AV, Manola J, Loffredo M, Renshaw AA, DellaCroce A, Kantoff PW (2004) 6-month androgen suppression plus radiation therapy vs radiation therapy alone for patients with clinically localized prostate cancer: a randomized controlled trial. JAMA 292(7):821–827. doi:10.1001/jama.292.7.821

    Article PubMed  Google Scholar 

  6. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, Redfern CH, Ferrari AC, Dreicer R, Sims RB, Xu Y, Frohlich MW, Schellhammer PF (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422. doi:10.1056/NEJMoa1001294

    Article PubMed CAS  Google Scholar 

  7. Joniau S, Abrahamsson PA, Bellmunt J, Figdor C, Hamdy F, Verhagen P, Vogelzang NJ, Wirth M, Van Poppel H, Osanto S (2012) Current vaccination strategies for prostate cancer. Eur Urol 61(2):290–306. doi:10.1016/j.eururo.2011.09.020

    Article PubMed CAS  Google Scholar 

  8. Demaria S, Bhardwaj N, McBride WH, Formenti SC (2005) Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys 63(3):655–666. doi:10.1016/j.ijrobp.2005.06.032

    Article PubMed  Google Scholar 

  9. Hodge JW, Guha C, Neefjes J, Gulley JL (2008) Synergizing radiation therapy and immunotherapy for curing incurable cancers. Opportunities and challenges. Oncology (Williston Park) 22 (9):1064–1070 (discussion 1075, 1080–1061, 1084)

  10. Kantoff PW, Schuetz TJ, Blumenstein BA, Glode LM, Bilhartz DL, Wyand M, Manson K, Panicali DL, Laus R, Schlom J, Dahut WL, Arlen PM, Gulley JL, Godfrey WR (2010) Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28(7):1099–1105. doi:10.1200/JCO.2009.25.0597

    Article PubMed CAS  Google Scholar 

  11. Sauter B, Albert ML, Francisco L, Larsson M, Somersan S, Bhardwaj N (2000) Consequences of cell death: exposure to necrotic tumor cells, but not primary tissue cells or apoptotic cells, induces the maturation of immunostimulatory dendritic cells. J Exp Med 191(3):423–434

    Article PubMed CAS  Google Scholar 

  12. Shimamura H, Sunamura M, Tsuchihara K, Egawa S, Takeda K, Matsuno S (2005) Irradiated pancreatic cancer cells undergo both apoptosis and necrosis, and could be phagocytized by dendritic cells. Eur Surg Res 37(4):228–234. doi:10.1159/000087868

    Article PubMed CAS  Google Scholar 

  13. Apetoh L, Ghiringhelli F, Tesniere A, Obeid M, Ortiz C, Criollo A, Mignot G, Maiuri MC, Ullrich E, Saulnier P, Yang H, Amigorena S, Ryffel B, Barrat FJ, Saftig P, Levi F, Lidereau R, Nogues C, Mira JP, Chompret A, Joulin V, Clavel-Chapelon F, Bourhis J, Andre F, Delaloge S, Tursz T, Kroemer G, Zitvogel L (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 13(9):1050–1059. doi:10.1038/nm1622

    Article PubMed CAS  Google Scholar 

  14. Obeid M, Panaretakis T, Joza N, Tufi R, Tesniere A, van Endert P, Zitvogel L, Kroemer G (2007) Calreticulin exposure is required for the immunogenicity of gamma-irradiation and UVC light-induced apoptosis. Cell Death Differ 14(10):1848–1850. doi:10.1038/sj.cdd.4402201

    Article PubMed CAS  Google Scholar 

  15. Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, Castedo M, Mignot G, Panaretakis T, Casares N, Metivier D, Larochette N, van Endert P, Ciccosanti F, Piacentini M, Zitvogel L, Kroemer G (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13(1):54–61. doi:10.1038/nm1523

    Article PubMed CAS  Google Scholar 

  16. Reits EA, Hodge JW, Herberts CA, Groothuis TA, Chakraborty M, Wansley EK, Camphausen K, Luiten RM, de Ru AH, Neijssen J, Griekspoor A, Mesman E, Verreck FA, Spits H, Schlom J, van Veelen P, Neefjes JJ (2006) Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med 203(5):1259–1271. doi:10.1084/jem.20052494

    Article PubMed CAS  Google Scholar 

  17. Chakraborty M, Abrams SI, Camphausen K, Liu K, Scott T, Coleman CN, Hodge JW (2003) Irradiation of tumor cells up-regulates Fas and enhances CTL lytic activity and CTL adoptive immunotherapy. J Immunol 170(12):6338–6347

    PubMed CAS  Google Scholar 

  18. Garnett CT, Palena C, Chakraborty M, Tsang KY, Schlom J, Hodge JW (2004) Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res 64(21):7985–7994. doi:10.1158/0008-5472.CAN-04-1525

    Article PubMed CAS  Google Scholar 

  19. Boehm U, Klamp T, Groot M, Howard JC (1997) Cellular responses to interferon-gamma. Annu Rev Immunol 15:749–795. doi:10.1146/annurev.immunol.15.1.749

    Article PubMed CAS  Google Scholar 

  20. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, Fu YX, Auh SL (2011) The efficacy of radiotherapy relies upon induction of type i interferon-dependent innate and adaptive immunity. Cancer Res 71(7):2488–2496. doi:10.1158/0008-5472.CAN-10-2820

    Article PubMed CAS  Google Scholar 

  21. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM (2005) Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 174(12):7516–7523

    PubMed CAS  Google Scholar 

  22. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Frelinger JG, Lord EM (2008) Radiation-induced IFN-gamma production within the tumor microenvironment influences antitumor immunity. J Immunol 180(5):3132–3139

    PubMed CAS  Google Scholar 

  23. Kaminski JM, Summers JB, Ward MB, Huber MR, Minev B (2003) Immunotherapy and prostate cancer. Cancer Treat Rev 29(3):199–209

    Article PubMed CAS  Google Scholar 

  24. Catalona WJ (1996) Clinical utility of measurements of free and total prostate-specific antigen (PSA): a review. Prostate Suppl 7:64–69

    Article PubMed CAS  Google Scholar 

  25. Kantoff PW, Talcott JA (1994) The prostate specific antigen. Its use as a tumor marker for prostate cancer. Hematol Oncol Clin North Am 8(3):555–572

    PubMed CAS  Google Scholar 

  26. Correale P, Walmsley K, Nieroda C, Zaremba S, Zhu M, Schlom J, Tsang KY (1997) In vitro generation of human cytotoxic T lymphocytes specific for peptides derived from prostate-specific antigen. J Natl Cancer Inst 89(4):293–300

    Article PubMed CAS  Google Scholar 

  27. Xue BH, Zhang Y, Sosman JA, Peace DJ (1997) Induction of human cytotoxic T lymphocytes specific for prostate-specific antigen. Prostate 30(2):73–78

    Article PubMed CAS  Google Scholar 

  28. Elzey BD, Siemens DR, Ratliff TL, Lubaroff DM (2001) Immunization with type 5 adenovirus recombinant for a tumor antigen in combination with recombinant canarypox virus (ALVAC) cytokine gene delivery induces destruction of established prostate tumors. Int J Cancer 94(6):842–849

    Article PubMed CAS  Google Scholar 

  29. Hodge JW, Schlom J, Donohue SJ, Tomaszewski JE, Wheeler CW, Levine BS, Gritz L, Panicali D, Kantor JA (1995) A recombinant vaccinia virus expressing human prostate-specific antigen (PSA): safety and immunogenicity in a non-human primate. Int J Cancer 63(2):231–237

    Article PubMed CAS  Google Scholar 

  30. Pavlenko M, Roos AK, Leder C, Hansson LO, Kiessling R, Levitskaya E, Pisa P (2004) Comparison of PSA-specific CD8+ CTL responses and antitumor immunity generated by plasmid DNA vaccines encoding PSA-HSP chimeric proteins. Cancer Immunol Immunother 53(12):1085–1092

    Article PubMed CAS  Google Scholar 

  31. Shahabi V, Reyes–Reyes M, Wallecha A, Rivera S, Paterson Y, Maciag P (2008) Development of a Listeria monocytogenes based vaccine against prostate cancer. Cancer Immunol Immunother 57(9):1301–1313. doi:10.1007/s00262-008-0463-z

    Article PubMed CAS  Google Scholar 

  32. Gulley JL, Arlen PM, Bastian A, Morin S, Marte J, Beetham P, Tsang KY, Yokokawa J, Hodge JW, Menard C, Camphausen K, Coleman CN, Sullivan F, Steinberg SM, Schlom J, Dahut W (2005) Combining a recombinant cancer vaccine with standard definitive radiotherapy in patients with localized prostate cancer. Clin Cancer Res 11(9):3353–3362. doi:10.1158/1078-0432.CCR-04-2062

    Article PubMed CAS  Google Scholar 

  33. Wallecha A, Maciag PC, Rivera S, Paterson Y, Shahabi V (2009) Construction and characterization of an attenuated Listeria monocytogenes strain for clinical use in cancer immunotherapy. Clin Vaccine Immunol 16(1):96–103. doi:10.1128/CVI.00274-08

    Article PubMed CAS  Google Scholar 

  34. Barry RA, Bouwer HG, Portnoy DA, Hinrichs DJ (1992) Pathogenicity and immunogenicity of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 60(4):1625–1632

    PubMed CAS  Google Scholar 

  35. Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109(4 Pt 1):1597–1608

    Article PubMed CAS  Google Scholar 

  36. Hsieh CS, Macatonia SE, Tripp CS, Wolf SF, O’Garra A, Murphy KM (1993) Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science (New York, NY 260 (5107):547–549

  37. Ikonomidis G, Paterson Y, Kos FJ, Portnoy DA (1994) Delivery of a viral antigen to the class I processing and presentation pathway by Listeria monocytogenes. J Exp Med 180(6):2209–2218

    Article PubMed CAS  Google Scholar 

  38. Beatty GL, Paterson Y (2001) Regulation of tumor growth by IFN-gamma in cancer immunotherapy. Immunol Res 24(2):201–210. doi:10.1385/IR:24:2:201

    Article PubMed CAS  Google Scholar 

  39. Beck-Engeser GB, Monach PA, Mumberg D, Yang F, Wanderling S, Schreiber K, Espinosa R III, Le Beau MM, Meredith SC, Schreiber H (2001) Point mutation in essential genes with loss or mutation of the second allele: relevance to the retention of tumor-specific antigens. J Exp Med 194(3):285–300

    Article PubMed CAS  Google Scholar 

  40. Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y (2001) Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 167(11):6471–6479

    PubMed CAS  Google Scholar 

  41. Hussain SF, Paterson Y (2004) CD4+ CD25+ regulatory T cells that secrete TGFbeta and IL-10 are preferentially induced by a vaccine vector. J Immunother 27(5):339–346

    Article PubMed CAS  Google Scholar 

  42. Maciag PC, Seavey MM, Pan ZK, Ferrone S, Paterson Y (2008) Cancer immunotherapy targeting the high molecular weight melanoma-associated antigen protein results in a broad antitumor response and reduction of pericytes in the tumor vasculature. Cancer Res 68(19):8066–8075. doi:10.1158/0008-5472.CAN-08-0287

    Article PubMed CAS  Google Scholar 

  43. Singh R, Dominiecki ME, Jaffee EM, Paterson Y (2005) Fusion to Listeriolysin O and delivery by Listeria monocytogenes enhances the immunogenicity of HER-2/neu and reveals subdominant epitopes in the FVB/N mouse. J Immunol 175(6):3663–3673

    PubMed CAS  Google Scholar 

  44. Singh R, Paterson Y (2007) In the FVB/N HER-2/neu transgenic mouse both peripheral and central tolerance limit the immune response targeting HER-2/neu induced by Listeria monocytogenes-based vaccines. Cancer Immunol Immunother 56(6):927–938. doi:10.1007/s00262-006-0237-4

    Article PubMed CAS  Google Scholar 

  45. Chakravarty PK, Guha C, Alfieri A, Beri V, Niazova Z, Deb NJ, Fan Z, Thomas EK, Vikram B (2006) Flt3L therapy following localized tumor irradiation generates long-term protective immune response in metastatic lung cancer: its implication in designing a vaccination strategy. Oncology 70(4):245–254. doi:10.1159/000096288

    Article PubMed CAS  Google Scholar 

  46. Meng Y, Carpentier AF, Chen L, Boisserie G, Simon JM, Mazeron JJ, Delattre JY (2005) Successful combination of local CpG-ODN and radiotherapy in malignant glioma. Int J Cancer 116(6):992–997. doi:10.1002/ijc.21131

    Article PubMed CAS  Google Scholar 

  47. Kim KW, Kim SH, Shin JG, Kim GS, Son YO, Park SW, Kwon BH, Kim DW, Lee CH, Sol MY, Jeong MH, Chung BS, Kang CD (2004) Direct injection of immature dendritic cells into irradiated tumor induces efficient antitumor immunity. Int J Cancer 109(5):685–690. doi:10.1002/ijc.20036

    Article PubMed CAS  Google Scholar 

  48. Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, Hodge JW (2004) External beam radiation of tumors alters phenotype of tumor cells to render them susceptible to vaccine-mediated T-cell killing. Cancer Res 64(12):4328–4337. doi:10.1158/0008-5472.CAN-04-0073

    Article PubMed CAS  Google Scholar 

  49. Tseng CW, Trimble C, Zeng Q, Monie A, Alvarez RD, Huh WK, Hoory T, Wang MC, Hung CF, Wu TC (2009) Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts. Cancer Immunol Immunother 58(5):737–748. doi:10.1007/s00262-008-0596-0

    Article PubMed CAS  Google Scholar 

  50. Pavlenko M, Leder C, Roos AK, Levitsky V, Pisa P (2005) Identification of an immunodominant H-2D(b)-restricted CTL epitope of human PSA. Prostate 64(1):50–59. doi:10.1002/pros.20221

    Article PubMed CAS  Google Scholar 

  51. Shang XY, Chen HS, Zhang HG, Pang XW, Qiao H, Peng JR, Qin LL, Fei R, Mei MH, Leng XS, Gnjatic S, Ritter G, Simpson AJ, Old LJ, Chen WF (2004) The spontaneous CD8+ T-cell response to HLA-A2-restricted NY-ESO-1b peptide in hepatocellular carcinoma patients. Clin Cancer Res 10(20):6946–6955

    Article PubMed CAS  Google Scholar 

  52. Dasu A (2007) Is the alpha/beta value for prostate tumours low enough to be safely used in clinical trials? Clin Oncol (R Coll Radiol) 19(5):289–301. doi:10.1016/j.clon.2007.02.007

    Article CAS  Google Scholar 

  53. King CR, Fowler JF (2001) A simple analytic derivation suggests that prostate cancer alpha/beta ratio is low. Int J Radiat Oncol Biol Phys 51(1):213–214

    Article PubMed CAS  Google Scholar 

  54. Fowler J, Chappell R, Ritter M (2001) Is alpha/beta for prostate tumors really low? Int J Radiat Oncol Biol Phys 50(4):1021–1031

    Article PubMed CAS  Google Scholar 

  55. Pollack A, Zagars GK, Smith LG, Lee JJ, von Eschenbach AC, Antolak JA, Starkschall G, Rosen I (2000) Preliminary results of a randomized radiotherapy dose-escalation study comparing 70 Gy with 78 Gy for prostate cancer. J Clin Oncol 18(23):3904–3911

    PubMed CAS  Google Scholar 

  56. Higano CS, Schellhammer PF, Small EJ, Burch PA, Nemunaitis J, Yuh L, Provost N, Frohlich MW (2009) Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115(16):3670–3679. doi:10.1002/cncr.24429

    Article PubMed CAS  Google Scholar 

  57. Neeson P, Pan ZK, Paterson Y (2008) Listeriolysin O is an improved protein carrier for lymphoma immunoglobulin idiotype and provides systemic protection against 38C13 lymphoma. Cancer Immunol Immunother 57(4):493–505. doi:10.1007/s00262-007-0388-y

    Article PubMed CAS  Google Scholar 

  58. Gulley J, Chen AP, Dahut W, Arlen PM, Bastian A, Steinberg SM, Tsang K, Panicali D, Poole D, Schlom J, Michael Hamilton J (2002) Phase I study of a vaccine using recombinant vaccinia virus expressing PSA (rV-PSA) in patients with metastatic androgen-independent prostate cancer. Prostate 53(2):109–117. doi:10.1002/pros.10130

    Article PubMed CAS  Google Scholar 

  59. Heiser A, Coleman D, Dannull J, Yancey D, Maurice MA, Lallas CD, Dahm P, Niedzwiecki D, Gilboa E, Vieweg J (2002) Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J Clin Invest 109(3):409–417. doi:10.1172/JCI14364

    PubMed CAS  Google Scholar 

  60. Williams SA, Xu Y, De Marzo AM, Isaacs JT, Denmeade SR (2010) Prostate-specific antigen (PSA) is activated by KLK2 in prostate cancer ex vivo models and in prostate-targeted PSA/KLK2 double transgenic mice. Prostate 70(7):788–796. doi:10.1002/pros.21111

    PubMed CAS  Google Scholar 

  61. Boike TP, Lotan Y, Cho LC, Brindle J, DeRose P, Xie XJ, Yan J, Foster R, Pistenmaa D, Perkins A, Cooley S, Timmerman R (2011) Phase I dose-escalation study of stereotactic body radiation therapy for low- and intermediate-risk prostate cancer. J Clin Oncol 29(15):2020–2026. doi:10.1200/JCO.2010.31.4377

    Article PubMed  Google Scholar 

  62. Grills IS, Martinez AA, Hollander M, Huang R, Goldman K, Chen PY, Gustafson GS (2004) High dose rate brachytherapy as prostate cancer monotherapy reduces toxicity compared to low dose rate palladium seeds. J Urol 171(3):1098–1104. doi:10.1097/01.ju.0000113299.34404.22

    Article PubMed  Google Scholar 

  63. Bonner JA, Harari PM, Giralt J, Azarnia N, Shin DM, Cohen RB, Jones CU, Sur R, Raben D, Jassem J, Ove R, Kies MS, Baselga J, Youssoufian H, Amellal N, Rowinsky EK, Ang KK (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354(6):567–578. doi:10.1056/NEJMoa053422

    Article PubMed CAS  Google Scholar 

  64. D’Amico AV, Chen MH, Renshaw AA, Loffredo B, Kantoff PW (2008) Risk of prostate cancer recurrence in men treated with radiation alone or in conjunction with combined or less than combined androgen suppression therapy. J Clin Oncol 26(18):2979–2983. doi:10.1200/JCO.2007.15.9699

    Article PubMed  Google Scholar 

  65. Maciag PC, Radulovic S, Rothman J (2009) The first clinical use of a live-attenuated Listeria monocytogenes vaccine: a phase I safety study of Lm-LLO-E7 in patients with advanced carcinoma of the cervix. Vaccine 27(30):3975–3983. doi:10.1016/j.vaccine.2009.04.041

    Article PubMed CAS  Google Scholar 

  66. Radulovic S, Brankovic-Magic M, Malisic E, Jankovic R, Dobricic J, Plesinac-Karapandzic V, Maciag PC, Rothman J (2009) Therapeutic cancer vaccines in cervical cancer: phase I study of Lovaxin-C. J BUON 14(Suppl 1):S165–S168

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the NIH grants, R01EB009040, RC2 AI087612 and U19AI091175 to CG.

Conflicts of interest

Dr. Anu Wallecha, Dr. Reshma Singh, and Dr. John Rothman are employed by Advaxis Inc and own stock in that company.

Author information

Authors and Affiliations

  1. Department of Radiation Oncology, UT Southwestern Medical Center, 5801 Forest Park Rd., Dallas, TX, 75390-9183, USA

    Raquibul Hannan

  2. Department of Radiation Oncology, Albert Einstein College of Medicine, Montefiore Medical Centre, 1300 Morris Park Avenue, Bronx, NY, 10461, USA

    Huagang Zhang, Laibin Liu, Patrice Cohen, Alan Alfieri & Chandan Guha

  3. Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, USA

    Chandan Guha

  4. Advaxis Inc., 305 College Road East, Princeton, NJ, 08540, USA

    Anu Wallecha, Reshma Singh & John Rothman

Authors
  1. Raquibul Hannan

    You can also search for this author inPubMed Google Scholar

  2. Huagang Zhang

    You can also search for this author inPubMed Google Scholar

  3. Anu Wallecha

    You can also search for this author inPubMed Google Scholar

  4. Reshma Singh

    You can also search for this author inPubMed Google Scholar

  5. Laibin Liu

    You can also search for this author inPubMed Google Scholar

  6. Patrice Cohen

    You can also search for this author inPubMed Google Scholar

  7. Alan Alfieri

    You can also search for this author inPubMed Google Scholar

  8. John Rothman

    You can also search for this author inPubMed Google Scholar

  9. Chandan Guha

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toChandan Guha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

262_2012_1257_MOESM1_ESM.tif

Supplemental Figure 1: Tumor response in representative mice on d34 from each of the cohorts: A) PSA Vaccine, B), PSA Vaccine +RT, C)RT Alone, D) No Treatment and E) Control Vaccine. (TIFF 3668 kb)

262_2012_1257_MOESM2_ESM.tif

Supplemental Figure 2: Representative wells after subjecting the splenocytes from each cohort to ELISpot analysis. A) Non-specific stimulation with PMA, B) Negative control stimulation with BSA, and C-G stimulation with PSA, C) PSA Vaccine, D), PSA Vaccine +RT, E)RT Alone, F) No Treatment and G) Control Vaccine. (TIFF 276 kb)

262_2012_1257_MOESM3_ESM.tif

Supplemental Figure 3: FACS analysis for IFN-γ in CD8+CD3+ cells.  A) PSA Vaccine, B), PSA Vaccine +RT, C)RT Alone, D) No Treatment and E) Control Vaccine. (TIFF 3480 kb)

Rights and permissions

About this article

Cite this article

Hannan, R., Zhang, H., Wallecha, A.et al. Combined immunotherapy withListeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer.Cancer Immunol Immunother61, 2227–2238 (2012). https://doi.org/10.1007/s00262-012-1257-x

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp