Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Oribatid Mites as Potential Vectors for Soil Microfungi: Study of Mite-Associated Fungal Species

  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

The ability of soil-living oribatid mites to disperse fungal propagules on their bodies was investigated. Classical plating methods were applied to cultivate these fungi and to study their morphology. Molecular markers were used for further determination. The nuclear ribosomal large subunit and the nuclear ribosomal internal transcribed spacer of DNA extracts of the cultured fungi as well as total DNA extracts of the mites themselves, also containing fungal DNA, were amplified and sequenced. Based on phylogenetic analysis, a total of 31 fungal species from major fungal groups were found to be associated with oribatid mites, indicating that mites do not selectively disperse specific species or species groups. The detected taxa were mainly saprobiontic, cosmopolitan (e.g.,Alternaria tenuissima), but also parasitic fungi (Beauveria bassiana) for whose dispersal oribatid mites might play an important role. In contrast, no mycorrhizal fungi were detected in association with oribatid mites, indicating that their propagules are dispersed in a different way. In addition, fungi that are known to be a preferred food for oribatid mites such as the Dematiacea were not detected in high numbers. Results of this study point to the potential of oribatid mites to disperse fungal taxa in soil and indicate that co-evolutionary patterns between oribatid mites and their associated fungi might be rare or even missing in most cases, since we only detected ubiquitous taxa attached to the mites.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. MF Allen (1987)ArticleTitleRe-establishment of mycorrhizas on Mount St Helens: migration vectorsTrans Br Mycol Soc88 413–417OccurrenceHandle10.1016/S0007-1536(87)80019-0

    Article  Google Scholar 

  2. SF Altschul TL Madden AA Schäffer J Zhang Z Zhang W Miller DJ Lipman (1997)ArticleTitleGapped BLAST and PSI-BLAST: a new generation of protein database search programsNucleic Acids Res25 3389–3402OccurrenceHandle9254694OccurrenceHandle10.1093/nar/25.17.3389OccurrenceHandle1:CAS:528:DyaK2sXlvFyhu7w%3D

    Article PubMed CAS  Google Scholar 

  3. JH Andrews (1991) Comparative Ecology of Microorganisms and Macroorganisms Springer Berlin, Heidelberg, New York

    Google Scholar 

  4. von Arx, JA (1981) The Genera of Fungi Sporulating in Pure Culture, 3rd ed. J. Cramer, Vaduz.

  5. Barnett, HL, Hunter, BB (1998) Illustrated Genera of Imperfect Fungi. 4th ed. APS, St. Paul.

  6. VM Behan SB Hill (1978)ArticleTitleFeeding habits and spore dispersal of oribatid mites in the North American arcticRev Ecol Biol Sol15 497–516

    Google Scholar 

  7. VM Behan-Pelletier SB Hill (1983)ArticleTitleFeeding habits of sixteen species of Oribatei (Acari) from an acid peat bog, Glenamoy, IrelandRev Ecol Biol Sol20 221–267

    Google Scholar 

  8. F Bernini (1986)ArticleTitleCurrent ideas on the phylogeny and adaptive radiation of AcaridaBoll Zool53 279–313

    Google Scholar 

  9. PL Berthet (1964)ArticleTitleField study of the mobility of Oribatei (Acari), using radioactive taggingJ Anim Ecol33 443–449

    Google Scholar 

  10. S Bertolino A Vizzini LA Wauters G Tosi (2004)ArticleTitleConsumption of hypogeous and epigeous fungi by red squirrel (Sciurus vulgaris) in subalpine conifer forestsForest Ecol Manag202 227–233

    Google Scholar 

  11. M Blackwell D Malloch (1991)ArticleTitleLife-history and arthropod dispersal of a coprophilous-stylophageMycologia83 360–366

    Google Scholar 

  12. T Boeckhout (1995)ArticleTitlePseudozyma Bandoni emend. Boekhout, a genus for yeast-like anamorphs of UstilaginalesJ Gen Appl Microbiol41 359–366

    Google Scholar 

  13. T Boeckhout B Theelen J Houbraken V Robert G Scorzetti A Gafni U Gerson A Sztejnberg (2003)ArticleTitleNovel anamorphic mite-associated fungi belonging to the Ustilaginomycetes:Meira geulakonigii gen. nov., sp. nov.,Meira argovae sp. nov. andAcaromyces ingoldii gen. nov., sp. novInt J Syst Evol Microbiol53 1655–1664

    Google Scholar 

  14. JW Buck JH Andrews (1999)ArticleTitleAttachment of the yeastRhodosporidium toruloides is mediated by adhesives localized at sites of bud cell developmentAppl Environ Microb65 465–471OccurrenceHandle1:CAS:528:DyaK1MXpvFCmuw%3D%3D

    CAS  Google Scholar 

  15. JW Carmichael WB Kendrick IL Conners L Sigler (1980) Genera of Hyphomycetes University of Alberta Press, Edmonton

    Google Scholar 

  16. AA Christen (1975)ArticleTitleSome fungi associated with CollembolaRev Ecol Biol Sol12 723–728

    Google Scholar 

  17. M Christensen (1989)ArticleTitleA view of fungal ecologyMycologia81 1–19

    Google Scholar 

  18. W Colgan AW Claridge (2002)ArticleTitleMycorrhizal effectiveness ofRhizopogon spores recovered from faecal pellets of small forest-dwelling mammalsMycol Res106 314–320OccurrenceHandle10.1017/S0953756202005634

    Article  Google Scholar 

  19. EF Dijkstra JJ Boon JM MourikParticleVan (1998)ArticleTitleAnalytical pyrolysis of a soil profile under Scots pineEur J Soil Sci49 295–304OccurrenceHandle10.1046/j.1365-2389.1998.00164.x

    Article  Google Scholar 

  20. NJ Dix J Webster (1995) Fungal Ecology Chapman and Hall London

    Google Scholar 

  21. KH Domsch W Gams TH Anderson (1993) Compendium of soil fungi, Vols. 1 and 2 IHW Eching

    Google Scholar 

  22. JJ Doyle JL Doyle (1990)ArticleTitleIsolation of plant DNA from fresh tissueFocus12 13–15

    Google Scholar 

  23. C Drechsler (1941)ArticleTitleSome hyphomycetes parasitic on free-living terricolous nematodesPhytopathology31 773–802

    Google Scholar 

  24. KM Dromph (2001)ArticleTitleDispersal of entomopathogenic fungi by colembolansSoil Biol Biochem33 2047–2051OccurrenceHandle1:CAS:528:DC%2BD3MXnvFCnsL0%3D

    CAS  Google Scholar 

  25. AZ Farahat (1966)ArticleTitleStudies on the influence of some fungi on Collembola and AcariPedobiologia6 258–268

    Google Scholar 

  26. AC Fogaça PI SilvaParticleda MTM Miranda AG Bianchi A Miranda PEM Ribolla S Daffre (1999)ArticleTitleAntimicrobial activity of a bovine hemoglobin fragment in the tickBoophilus microplusJ Biol Chem274 25330–25334OccurrenceHandle10464258

    PubMed  Google Scholar 

  27. KL Fourman (1936)ArticleTitleKleintierwelt, Kleinklima und Mikroklima in Beziehung zur Kennzeichnung des forstlichen Standorts und der Bestandesabfallzersetzung auf bodenbiologischer GrundlageMitt Forstwirtsch Forstwiss1936 596–615

    Google Scholar 

  28. M Gadgil (1971)ArticleTitleDispersal: population consequences to evolutionEcology52 253–261

    Google Scholar 

  29. W Gams (1993) Supplement and Corrigendum to the Compendium of Soil Fungi IHW Eching

    Google Scholar 

  30. CA Gehring JE Wolf TC Theimer (2002)ArticleTitleTerrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in a rain forest soilEcol Lett5 540–548OccurrenceHandle10.1046/j.1461-0248.2002.00353.x

    Article  Google Scholar 

  31. H Große-Brauckmann G Große-Brauckmann (1977)ArticleTitleMakromyzeten des vorderen und hinteren Odenwaldes (ein floristischer Vergleich)Z Pilzkunde43 59–74

    Google Scholar 

  32. TA Hall (1999)ArticleTitleBioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NTNucleic Acids Symp Ser41 95–98OccurrenceHandle1:CAS:528:DC%2BD3cXhtVyjs7Y%3D

    CAS  Google Scholar 

  33. RDG Hanlon (1981)ArticleTitleInfluence of grazing by Collembola on the activity of senescent fungal colonies grown on media of different nutrient concentrationsOikos36 362–367

    Google Scholar 

  34. RDG Hanlon JM Anderson (1979)ArticleTitleThe effects of Collembola grazing on microbial activity in decomposing leaf litterOecologia38 93–99OccurrenceHandle10.1007/BF00347827

    Article  Google Scholar 

  35. KM Harinikumar DJ Bagyaraj (1994)ArticleTitlePotential of earthworms, ants, millipedes, and termites for dissemination of vesicular–arbuscular mycorrhizal fungi in soilBiol Fertil Soils18 115–118OccurrenceHandle10.1007/BF00336456

    Article  Google Scholar 

  36. JL Harper (1981) The meanings of rarity H Synge (Eds) The Biological Aspects of Rare Plant Conservation Wiley New York 189–203

    Google Scholar 

  37. J Hubert V Šustr J Smrž (1999)ArticleTitleFeeding of the oribatid miteScheloribates laevigatus (Acari: Oribatida) in laboratory experimentsPedobiologia43 328–339

    Google Scholar 

  38. J Hubert M Žilová S Pekár (2001)ArticleTitleFeeding preferences and gut contents of three panphytophagous oribatid mites (Acari: Oribatida)Eur J Soil Biol37 197–208OccurrenceHandle10.1016/S1164-5563(01)01083-4

    Article  Google Scholar 

  39. AP Jacot (1930)ArticleTitleMoss-mites as spore-bearersMycologia22 94–96

    Google Scholar 

  40. D Kempson M Lloyd R Ghelardi (1963)ArticleTitleA new extractor for woodland litterPedobiologia3 1–21

    Google Scholar 

  41. PM Kirk PF Cannon JC David JA Stalpers (2001) Ainsworth & Bisby's Dictionary of the FungiEditionNumber9th ed. CABI Publishing Oxon

    Google Scholar 

  42. JN Klironomos P Moutoglis (1999)ArticleTitleColonization of non-mycorrhizal plants by mycorrhizal neighbours as influenced bythe collembolan,Folsomia candidaBiol Fertil Soils29 277–281OccurrenceHandle10.1007/s003740050553

    Article  Google Scholar 

  43. A Macfayden (1961)ArticleTitleImproved funnel-type extractors for soil arthropodsJ Anim Ecol30 171–184

    Google Scholar 

  44. SA Mangan GH Adler (2002)ArticleTitleSeasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forestOecologia131 587–597OccurrenceHandle10.1007/s00442-002-0907-7

    Article  Google Scholar 

  45. M Maraun S Migge M Schaefer S Scheu (1998)ArticleTitleSelection of microfungal food by six oribatid mite species (Oribatida, Acari) from two different beech forestsPedobiologia42 232–240

    Google Scholar 

  46. M Maraun S Visser S Scheu (1998)ArticleTitleOribatid mites enhance the recovery of the microbial community after a strong disturbanceAppl Soil Ecol9 175–181OccurrenceHandle10.1016/S0929-1393(98)00072-9

    Article  Google Scholar 

  47. M Maraun S Scheu (2000)ArticleTitleThe structure of oribatid mite communities (Acari, Oribatida): patterns, mechanisms and implications for future researchEcography23 374–383OccurrenceHandle10.1034/j.1600-0587.2000.d01-1647.x

    Article  Google Scholar 

  48. M Maraun H Martens S Migge A Theenhaus S Scheu (2003)ArticleTitleAdding to ‘the enigma of soil animal diversity’: fungal feeders and saprophagous soil invertebrates prefer similar food substratesEur J Soil Biol39 85–95OccurrenceHandle10.1016/S1164-5563(03)00006-2

    Article  Google Scholar 

  49. M Maraun J-A Salamon K Schneider M Schaefer S Scheu (2003)ArticleTitleOribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus sylvatica): effects of mechanical perturbationsSoil Biol Biochem35 1387–1394OccurrenceHandle10.1016/S0038-0717(03)00218-9OccurrenceHandle1:CAS:528:DC%2BD3sXntVGnur4%3D

    Article CAS  Google Scholar 

  50. MA McLean N Kaneko D Parkinson (1996)ArticleTitleDoes selective grazing by mites and collembolan affect litter fungal community structure?Pedobiologia40 97–105

    Google Scholar 

  51. FA Meier S Scherrer R Honegger (2002)ArticleTitleFaecal pellets of lichenivorous mites contain viable cells of the lichen-forming ascomyceteXanthoria parietina and its green algal photobiont,Trebouxia arboricolaBiol J Linn Soc76 259–268OccurrenceHandle10.1046/j.1095-8312.2002.00065.x

    Article  Google Scholar 

  52. MJ Mitchell (1978)ArticleTitleVertical and horizontal distributions of oribatid mites (Acari: Cryptostigmata) in an aspen woodland soilEcology59 516–525

    Google Scholar 

  53. TD Paine KF Raffa TC Harrington (1997)ArticleTitleInteractions among scolytid bark beetles, their associated fungi, and live host conifersAnnu Rev Entomol42 179–206OccurrenceHandle15012312OccurrenceHandle10.1146/annurev.ento.42.1.179OccurrenceHandle1:CAS:528:DyaK2sXjvFSlsw%3D%3D

    Article PubMed CAS  Google Scholar 

  54. YD Pande P Berthet (1973)ArticleTitleStudies on the food and feeding habits of soil Oribatei in a black pine plantationOecologia12 413–426OccurrenceHandle10.1007/BF00345051

    Article  Google Scholar 

  55. DA Pherson AJ Beattie (1979)ArticleTitleFungal loads of invertebrates in beech leaf litterRev Ecol Biol Sol16 325–335

    Google Scholar 

  56. JF Ponge MJ Charpentie (1981)ArticleTitleÉtude des relations microflore–microfaune: expériences surPseudosinella alba (Packard), Collembole mycophageRev Ecol Biol Sol18 291–303

    Google Scholar 

  57. ML Rantalainen H Fritze J Haimi O Kiikkilä T Pennanen H Setälä (2004)ArticleTitleDo enchytraeid worms and habitat corridors facilitate the colonisation of habitat patches by soil microbesBiol Fertil Soils39 200–208OccurrenceHandle10.1007/s00374-003-0687-1

    Article  Google Scholar 

  58. C Renker J Alphei F Buscot (2003)ArticleTitleSoil nematodes associated with the mammal pathogenic fungal genusMalassezia (Basidiomycota: Ustilaginomycetes) in Central European forestsBiol Fertil Soils37 70–72OccurrenceHandle1:CAS:528:DC%2BD3sXntV2itg%3D%3D

    CAS  Google Scholar 

  59. S Scheu (1993)ArticleTitleLitter microflora—soil macrofauna interactions in lignin decomposition: a laboratory experiment with14C-labelled ligninSoil Biol Biochem25 1703–1711OccurrenceHandle10.1016/0038-0717(93)90173-9OccurrenceHandle1:CAS:528:DyaK2cXltlOiuw%3D%3D

    Article CAS  Google Scholar 

  60. S Scheu E Schulz (1996)ArticleTitleSecondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebratesBiodivers Conserv5 235–250OccurrenceHandle10.1007/BF00055833

    Article  Google Scholar 

  61. K Schneider S Migge RA Norton S Scheu R Langel A Reineking M Maraun (2004)ArticleTitleTrophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N)Soil Biol Biochem36 1769–1774OccurrenceHandle10.1016/j.soilbio.2004.04.033OccurrenceHandle1:CAS:528:DC%2BD2cXnslKhtb4%3D

    Article CAS  Google Scholar 

  62. K Schneider M Maraun (2005)ArticleTitleFeeding preferences among dark pigmented fungal taxa (“Dematiacea”) indicate limited trophic niche differentiation of oribatid mites (Oribatida, Acari)Pedobiologia49 61–67OccurrenceHandle10.1016/j.pedobi.2004.07.010

    Article  Google Scholar 

  63. MAA Schipper (1978)ArticleTitle1. On certain species ofMucor with a key to all accepted species. 2. On the generaRhizomucor andParasitellaStud Mycol17 1–71

    Google Scholar 

  64. R Schuster (1956)ArticleTitleDer Anteil der Oribatiden an den Zersetzungsvorgängen im BodenZ Morph Ökol Tiere45 1–33OccurrenceHandle10.1007/BF00699814

    Article  Google Scholar 

  65. P Skubala (1999)ArticleTitleColonization of a dolomitic dump by oribatid mites (Acari, Oribatida)Pedobiologia43 145–159

    Google Scholar 

  66. SE Smith DJ Read (1997) Mycorrhizal SymbiosisEditionNumber2nd ed. Academic Press San Diego

    Google Scholar 

  67. O Stefaniak S Seniczak (1976)ArticleTitleThe microflora of the alimentary canal ofAchipteria coleoptrata (Acarina, Oribatei)Pedobiologia16 185–194

    Google Scholar 

  68. O Stefaniak S Seniczak (1981)ArticleTitleThe effect of fungal diet on the development ofOppia nitens (Acari, Oribatei) and on the microflora of its alimentary tractPedobiologia21 202–210

    Google Scholar 

  69. K Strenzke (1952)ArticleTitleUntersuchungen über die Tiergemeinschaften des Bodens: Die Oribatiden und ihre Synusien in den Böden NorddeutschlandsZoologica37 1–137

    Google Scholar 

  70. DL Swofford (2003) Paup*. Phylogenetic Analysis Using Parsimony (*and other Methods), Ver. 4.0b10 Sinauer Associates Sunderland, MA

    Google Scholar 

  71. J DriftParticleVan der (1965) The effect of animal activity in the litter EG Hallsworth DV Crawford (Eds) Experimental Pedology Butterworth London 227–235

    Google Scholar 

  72. S Visser (1985) Role of soil invertebrates in determining the composition of soil microbial communities AH Fitter D Atkinson DJ Read MB Usher (Eds) Ecological Interactions in Soil. Plants, Microbes and Animals Blackwell Oxford 297–317

    Google Scholar 

  73. S Visser D Parkinson M Hassall (1987)ArticleTitleFungi associated withOnychiurus subtenuis (Collembola) in an aspen woodlandCan J Bot65 635–642OccurrenceHandle10.1139/b87-083

    Article  Google Scholar 

  74. S Visser JB Whittaker D Parkinson (1981)ArticleTitleEffects of collembolan grazing on nutrient release and respiration of a leaf litter inhabiting fungusSoil Biol Biochem13 215–218OccurrenceHandle10.1016/0038-0717(81)90023-7OccurrenceHandle1:CAS:528:DyaL3MXltlWmuro%3D

    Article CAS  Google Scholar 

  75. P Volz (1935)ArticleTitleUntersuchungen über Mikroschichtung der Fauna von WaldbödenZool Jahrb Abt Syst Ökol Geogr66 153–210

    Google Scholar 

  76. JA Wallwork (1983)ArticleTitleOribatids in forest ecosystemsAnnu Rev Entomol28 109–130OccurrenceHandle10.1146/annurev.en.28.010183.000545

    Article  Google Scholar 

  77. NJ Warner MF Allen JA MacMahon (1987)ArticleTitleDispersal agents of vesicular–arbuscular mycorrhizal fungi in a disturbed arid ecosystemMycologia79 721–730

    Google Scholar 

  78. RH Zaidi Z Jaal NJ Hawkes J Hemingway WOC Symondson (1999)ArticleTitleCan multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators?Mol Ecol8 2081–2087OccurrenceHandle10632859OccurrenceHandle10.1046/j.1365-294x.1999.00823.xOccurrenceHandle1:CAS:528:DC%2BD3cXpvF2ltg%3D%3D

    Article PubMed CAS  Google Scholar 

Download references

Acknowledgments

We thank Claudia Krüger for her help with the cultivation of the fungi isolated from the oribatid mites.

Author information

Authors and Affiliations

  1. Terrestrial Ecology, Institute of Botany, University of Leipzig, Johannisallee 21, D-04103, Leipzig, Germany

    C. Renker, B. Zimdars & F. Buscot

  2. Systematic Botany, Institute of Botany, University of Leipzig, Johannisallee 21, D-04103, Leipzig, Germany

    P. Otto

  3. Institute of Zoology, Darmstadt University of Technology, Schnittspahnstraße 3, D-64287, Darmstadt, Germany

    K. Schneider & M. Maraun

Authors
  1. C. Renker

    You can also search for this author inPubMed Google Scholar

  2. P. Otto

    You can also search for this author inPubMed Google Scholar

  3. K. Schneider

    You can also search for this author inPubMed Google Scholar

  4. B. Zimdars

    You can also search for this author inPubMed Google Scholar

  5. M. Maraun

    You can also search for this author inPubMed Google Scholar

  6. F. Buscot

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toC. Renker.

Rights and permissions

About this article

Cite this article

Renker, C., Otto, P., Schneider, K.et al. Oribatid Mites as Potential Vectors for Soil Microfungi: Study of Mite-Associated Fungal Species.Microb Ecol50, 518–528 (2005). https://doi.org/10.1007/s00248-005-5017-8

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp