Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

Two systems of spatial representation underlying navigation

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

We review evidence for two distinct cognitive processes by which humans and animals represent the navigable environment. One process uses the shape of the extended 3D surface layout to specify the navigator’s position and orientation. A second process uses objects and patterns as beacons to specify the locations of significant objects. Although much of the evidence for these processes comes from neurophysiological studies of navigating animals and neuroimaging studies of human adults, behavioral studies of navigating children shed light both on the nature of these systems and on their interactions.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

ArticleOpen access24 November 2017

Chapter© 2020

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Notes

  1. In a similar test with toddlers, Nardini et al. (2008) found success with two white walls and two blue walls, both plain and patterned. Lourenco et al. (2009), on the other hand, replicated their failure of alternating features using red or blue patterns, rather than solid walls. Because of these conflicting results, children’s ability to use of color cues for reorientation remains unclear.

References

  • Benhamou S, Poucet B (1998) Landmark use by navigating rats (Rattus norvegicus): contrasting geometric and featural information. J Comp Psychol 112:317–322

    Article  Google Scholar 

  • Brown AA, Spetch ML, Hurd PL (2007) Growing in circles: rearing environment alters spatial navigation in fish. Psychol Sci 18:569–573

    Article PubMed  Google Scholar 

  • Burgess N (2006) Spatial memory: how egocentric and allocentric combine. Trends Cogn Sci 10:551–557

    Article PubMed  Google Scholar 

  • Burgess N, Maguire E, O’Keefe J (2002) The human hippocampus and spatial and episodic memory. Neuron 35:625–641

    Article CAS PubMed  Google Scholar 

  • Carey S (2009) The origin of concepts. Oxford University Press, New York

    Google Scholar 

  • Cartwright BA, Collett TS (1982) How honey bees use landmarks to guide their return to a food source. Nature 295:560–564

    Article  Google Scholar 

  • Cheng K (1986) A purely geometric module in the rats’ spatial representation. Cognition 23:149–178

    Article CAS PubMed  Google Scholar 

  • Cheng K (2008) Whither geometry? Troubles of the geometric module. Trends Cogn Sci 12:355–361

    Article PubMed  Google Scholar 

  • Cheng K, Gallistel CR (1984) Testing the geometric power of an animal’s spatial representation. In: Roitblat HL, Bever TG, Terrace HS (eds) Animal cognition: Proceedings of the Harry Frank Guggenheim Conference. Erlbaum, Hillsdale, pp 409–242

  • Cheng K, Newcombe NS (2005) Is there a geometric module for spatial reorientation? Squaring theory and evidence. Psychonomic Bull Rev 12:1–23

    Google Scholar 

  • Chiandetti C, Vallortigara G (2008) Is there an innate geometric module? Effects of experience with angular geometric cues on spatial re-orientation based on the shape of the environment. Animal Cogn 11:139–146

    Article  Google Scholar 

  • Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3:542–552

    Article CAS PubMed  Google Scholar 

  • Cressant A, Muller RU, Poucet B (1997) Failure of centrally placed objects to control the firing fields of hippocampal place cells. J Neurosci 17:2531–2542

    CAS PubMed  Google Scholar 

  • Doeller CF, Burgess N (2008) Distinct error-correcting and incidental learning of location relative to landmarks and boundaries. Proc National Academy Sci 105:5909–5914

    Article CAS  Google Scholar 

  • Doeller CF, King JA, Burgess N (2008) Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc National Academy Sci 105:5915–5920

    Article CAS  Google Scholar 

  • Egerton S, Callaghan V, Chernett P (2000) A biologically inspired mapping model for autonomous mobile robots. In: Mohammadin M (ed) New frontiers in computational intelligence and its applications. IOS Press, Amsterdam, pp 20–29

    Google Scholar 

  • Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392:598–601

    Article CAS PubMed  Google Scholar 

  • Epstein R, Harris A, Stanley D, Kanwisher N (1999) The parahippocampal place area: recognition, navigation, or encoding? Neuron 23:115–125

    Article CAS PubMed  Google Scholar 

  • Epstein R, DeYoe EA, Press DZ, Rosen AC, Kanwisher N (2001) Neuropsychological evidence for a topographical learning mechanism in parahippocampal cortex. Cogn Neuropsychol 18:481–508

    CAS  Google Scholar 

  • Epstein RA, Higgins JS, Thompson-Schill SL (2005) Learning places from views: variation in scene processing as a function of experience and navigational ability. J Cogn Neurosci 17:73–83

    Article PubMed  Google Scholar 

  • Etienne AS (2004) Path integration in mammals. Hippocampus 14:180–192

    Article PubMed  Google Scholar 

  • Gallistel CR (1990) The organization of learning. MIT Press, Cambridge

    Google Scholar 

  • Garrad-Cole F, Lew AR, Bremner JG, Whitaker C (2001) Use of cue configuration geometry for spatial orientation in human infants (Homo sapiens). J Comp Psychol 115:317–320

    Article CAS PubMed  Google Scholar 

  • Gee AP, Chekhlov D, Calway A, Mayol-Cuevas W (2008) Discovering higher level structure in visual SLAM. IEEE Trans Robotics 24:980–990

    Article  Google Scholar 

  • Goodridge JP, Dudchenko PA, Worboys KA, Golob EJ, Taube JS (1998) Cue control and head direction cells. Behav Neurosci 112:749–761

    Article CAS PubMed  Google Scholar 

  • Gouteux S, Spelke ES (2001) Children’s use of geometry and landmarks to reorient in an open space. Cognition 81:119–148

    Article CAS PubMed  Google Scholar 

  • Grill-Spector K (2003) The neural basis of object perception. Curr Opin Neurobiol 13:159–166

    Article CAS PubMed  Google Scholar 

  • Hermer L, Spelke ES (1994) A geometric process for spatial reorientation in young children. Nature 370:57–59

    Article CAS PubMed  Google Scholar 

  • Hermer L, Spelke E (1996) Modularity and development: the case of spatial reorientation. Cognition 61:195–232

    Article CAS PubMed  Google Scholar 

  • Hermer-Vazquez L, Spelke ES, Katsnelson AS (1999) Sources of flexibility in human cognition: dual-task studies of space and language. Cogn Psychol 39:3–36

    Article CAS PubMed  Google Scholar 

  • Hermer-Vazquez L, Moffet A, Munkholm P (2001) Language, space, and the development of cognitive flexibility in humans: the case of two spatial memory tasks. Cognition 79:263–299

    Article CAS PubMed  Google Scholar 

  • Hupbach A, Nadel L (2005) Reorientation in a rhombic environment: no evidence for an encapsulated geometric module. Cogn Dev 20:279–302

    Article  Google Scholar 

  • Huttenlocher J, Lourenco SF (2007) Coding location in enclosed spaces: is geometry the principle? Dev Sci 10:741–746

    Article PubMed  Google Scholar 

  • Izard V, Pica P, Spelke ES, Dehaene S (2010) Euclidean intuitions of geometry in an Amazonian indigene group (in review)

  • Lakusta L, Dessalegn B, Landau B (2010) Impaired geometric reorientation caused by genetic defect. Proc National Academy Sci 107:2813–2817

    Article CAS  Google Scholar 

  • Landau B, Lakusta L (2009) Spatial representations across species: geometry, language, and maps. Curr Opin Neurobiol 19:1–8

    Article  Google Scholar 

  • Learmonth AE, Newcombe NS, Huttenlocher J (2001) Toddlers’ use of metric information and landmarks to reorient. J Exp Child Psychol 80:225–244

    Article CAS PubMed  Google Scholar 

  • Learmonth AE, Nadel L, Newcombe NS (2002) Children’s use of landmarks: implications for modularity theory. Psychol Sci 13:337–341

    Article PubMed  Google Scholar 

  • Learmonth AE, Newcombe NS, Sheridan N, Jones M (2008) Why size counts: Children’s spatial reorientation in large and small enclosures. Dev Sci 11:414–426

    Article PubMed  Google Scholar 

  • Lee SA, Spelke ES (2008) Children’s use of geometry for reorientation. Dev Sci 11:743–749

    Article PubMed  Google Scholar 

  • Lee SA, Spelke ES (2010a) Navigation as a source of geometric knowledge: young children’s use of distance, direction, and angle in a disoriented search task (under revision)

  • Lee SA, Spelke ES (2010b) Young children reorient by computing layout geometry, not by matching images of the environment (in review)

  • Lee SA, Spelke ES (2010c) Modular geometric mechanisms for navigation in disoriented children. Cogn Psychol (in press)

  • Lee SA, Shusterman S, Spelke ES (2006) Reorientation and landmark-guided search by young children: evidence for two systems. Psychol Sci 17:577–582

    Article PubMed  Google Scholar 

  • Lee SA, Winkler-Rhoades N, Spelke ES (2010) Fooling the geometric module: children reorient by perceived shape of the spatial layout, not by image-matching or relational information. In: Poster presented at the 24th international attention and performance symposium on “Space, Time and Number,” Paris, France

  • Lever C, Wills T, Cacucci F, Burgess N, O’Keefe J (2002) Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416:90–94

    Article CAS PubMed  Google Scholar 

  • Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29:9771–9777

    Article CAS PubMed  Google Scholar 

  • Lew AR, Gibbon B, Murphy C, Bremner JG (2010) Use of geometry for spatial reorientation in children only applies to symmetrical spaces. Dev Sci 13:490–498

    Article PubMed  Google Scholar 

  • Lourenco SF, Huttenlocher J (2006) How do young children determine location? Evidence from disorientation tasks. Cognition 100:511–529

    Article PubMed  Google Scholar 

  • Lourenco S, Addy D, Huttenlocher J (2009) Location representation in enclosed spaces: what types of information afford young children an advantage? J Exp Child Psychol 104:313–325

    Article PubMed  Google Scholar 

  • McGregor A, Hayward AJ, Pearce JM, Good MA (2004) Hippocampal lesions disrupt navigation based on the shape of the environment. Behav Neurosci 118:1011–1021

    Article CAS PubMed  Google Scholar 

  • Mendez MF, Cherrier MM (2003) Agnosia for scenes in topographagnosia. Neuropsychologia 41:1387–1395

    Article PubMed  Google Scholar 

  • Mittelstaedt ML, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwissenschaft 67:566

    Article  Google Scholar 

  • Morris RGM, Garrard P, Rawlins JNP, O’Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297:681–683

    Article CAS PubMed  Google Scholar 

  • Nardi D, Bingman VP (2007) Asymmetrical participation of the left and right hippocampus for representing environmental geometry in homing pigeons. Behav Brain Res 178:160–171

    Article PubMed  Google Scholar 

  • Nardini M, Atkinson J, Burgess N (2008) Children reorient using the left/right sense of coloured landmarks at 18–24 months. Cognition 106:519–527

    Article PubMed  Google Scholar 

  • Nardini M, Thomas R, Knowland V, Braddick O, Atkinson J (2009) A viewpoint-independent process for spatial reorientation. Cognition 112:241–248

    Article PubMed  Google Scholar 

  • Newcombe NS, Ratliff KR (2007) Explaining the development of spatial reorientation: modularity-plus-language versus the emergence of adaptive combination. In: Plumert J, Spencer J (eds) The emerging spatial mind. Oxford University Press, New York, pp 53–76

    Google Scholar 

  • Newcombe NS, Ratliff KR, Shallcross WL, Twyman AD (2009) Young children’s use of features to reorient is more than just associative: further evidence against a modular view of spatial processing. Dev Sci 12:1–8

    Article  Google Scholar 

  • O’Keefe J, Burgess N (1996) Geometric determinants of the place fields of hippocampal neurons. Nature 381:425–428

    Article PubMed  Google Scholar 

  • O’Keefe J, Nadel L (1978) The hippocampus as a cognitive map. Clarendon Press, Oxford

    Google Scholar 

  • Packard MG, McGaugh JL (1996) Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol Learn Mem 65:65–72

    Article CAS PubMed  Google Scholar 

  • Pitcher D, Charles L, Devlin J, Walsh V, Duchaine B (2009) Triple dissociation between faces, bodies, and objects in extrastriate cortex. Curr Biol 19:319–324

    Article CAS PubMed  Google Scholar 

  • Quirk GJ, Muller RU, Kubie JL (1990) The firing of hippocampal place cells in the dark depends on the rat’s recent experience. J Neurosci 10:2008–2017

    CAS PubMed  Google Scholar 

  • Ratliff KR, Newcombe NS (2008) Reorienting when cues conflict: evidence for an adaptive-combination view. Psychol Sci 19:1303–1307

    Article  Google Scholar 

  • Sheynikhovich D, Chavarriaga R, Strösslin T, Arleo A, Gerstner W (2009) Is there a geometric module for spatial orientation? Insights from a rodent navigation model. Psychol Rev 116:540–566

    Article PubMed  Google Scholar 

  • Shusterman A, Spelke E (2005) Language and the development of spatial reasoning. In: Carruthers P, Laurence S, Stich S (eds) The structure of the innate mind. Oxford University Press, New York, pp 89–106

    Chapter  Google Scholar 

  • Shusterman A, Lee SA, Spelke ES (2008) Young children’s spontaneous use of geometry in maps. Dev Sci 11:F1–F7

    Article PubMed  Google Scholar 

  • Shusterman A, Lee SA, Spelke ES (2010) Cognitive effects of language on human navigation. Cognition (in review)

  • Silveira G, Malis E, Rives P (2008) An efficient direct approach to visual SLAM. IEEE Trans Robotics 24:969–979

    Article  Google Scholar 

  • Solstad T, Boccara CN, Kropff E, Moser M, Moser EI (2008) Representation of geometric borders in the entorhinal cortex. Science 322:1865–1868

    Article CAS PubMed  Google Scholar 

  • Sovrano V, Bisazza A, Vallortigara G (2003) Modularity as a fish (Xenotoca eiseni) views it: conjoining geometric and nongeometric information for spatial reorientation. J Exp Psychol Animal Behav Process 29:199–210

    Article  Google Scholar 

  • Sovrano V, Bisazza A, Vallortigara G (2006) How fish do geometry in large and small spaces. Animal Cogn 10:47–54

    Article  Google Scholar 

  • Spelke ES, Lee SA, Izard V (2010) Beyond core knowledge: natural geometry. Cogn Sci (in press)

  • Stürzl W, Cheung A, Cheng K, Zeil J (2008) The information content of panoramic images I: the rotational errors and the similarity of views in rectangular experimental arenas. J Exp Psychol Animal Behav Process 34:1–14

    Article  Google Scholar 

  • Sutton J (2009) What is geometric information and how do animals use it? Behav Process 80:339–343

    Article  Google Scholar 

  • Thrun S (2003) Robotic mapping: a survey. In: Lakemeyer G, Nebel B (eds) Exploring artificial intelligence in the new millenium. Morgan Kaufmann, San Francisco

    Google Scholar 

  • Tommasi L, Gagliardo A, Andrew RJ, Vallortigara G (2003) Separate processing mechanisms for encoding geometric and landmark information in the avian hippocampus. Eur J Neurosci 17:1695–1702

    Article PubMed  Google Scholar 

  • Twyman AD, Newcombe NS, Gould TJ (2009) Of mice (mus musculus) and toddlers (Homo sapiens): evidence of species-general spatial reorientation. J Comp Psychol 123:342–345

    Article PubMed  Google Scholar 

  • Vallortigara G, Zanforlin M, Pasti G (1990) Geometric modules in animals’ spatial representation: a test with chicks. J Comp Psychol 104:248–254

    Article CAS PubMed  Google Scholar 

  • Vallortigara G, Pagni P, Sovrano V (2004) Separate geometric and non-geometric modules for spatial reorientation: evidence from a lopsided animal brain. J Cogn Neurosci 16:390–400

    Article PubMed  Google Scholar 

  • Wang RF, Spelke ES (2002) Human spatial representation: insights from animals. Trends Cogn Sci 6:376–382

    Article PubMed  Google Scholar 

  • Wang RF, Hermer L, Spelke ES (1999) Mechanisms of reorientation and object localization by children: a comparison with rats. Behav Neurosci 113:475–485

    Article CAS PubMed  Google Scholar 

  • Wang RF, Crowell JA, Simons DJ, Irwin DE, Kramer AF, Ambinder MS, Thomas LE, Gosney JL, Levinthal BR, Hsieh BB (2006) Spatial updating relies on an egocentric representation of space: effects of the number of objects. Psychon Bull Rev 13:281–286

    CAS PubMed  Google Scholar 

  • White NM, McDonald RJ (2002) Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Mem 77:125–184

    Article PubMed  Google Scholar 

  • Wystrach A, Beugnon G (2009) Ants learn geometry and features. Curr Biol 19:61–66

    Article CAS PubMed  Google Scholar 

  • Yonas A, Granrud CE, Pettersen L (1985) Infants’ sensitivity to relative size information for distance. Dev Psychol 21:161–167

    Article  Google Scholar 

  • Zugaro MB, Berthoz A, Wiener SI (2001) Background, but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons. J Neurosci 21:1–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Psychology, Harvard University, 33 Kirkland St., 11th Floor, Cambridge, MA, 02138, USA

    Sang Ah Lee & Elizabeth S. Spelke

Authors
  1. Sang Ah Lee

    You can also search for this author inPubMed Google Scholar

  2. Elizabeth S. Spelke

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toSang Ah Lee.

Rights and permissions

About this article

Cite this article

Lee, S.A., Spelke, E.S. Two systems of spatial representation underlying navigation.Exp Brain Res206, 179–188 (2010). https://doi.org/10.1007/s00221-010-2349-5

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp