Movatterモバイル変換


[0]ホーム

URL:


Skip to main content
Springer Nature Link
Log in

A binary matrix for background suppression in MALDI-MS of small molecules

  • Technical Note
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Application of matrix-assisted laser-desorption ionization mass spectrometry (MALDI-MS) to small-molecule detection is often limited, because of high matrix background signals in the low-mass region. We report here an approach in which a mixture of two conventional MALDI matrices with different proton affinity was used to suppress the formation of matrix clusters and fragments. Specifically, when acidic α-cyano-4-hydroxycinnamic acid (CHCA) and basic 9-aminoacridine (9-AA) were used as the binary matrix, fewer background matrix peaks were observed in both positive and negative-mode detection of small molecules. In addition, the presence of CHCA substantially reduced the laser fluence needed for analyte desorption and ionization; thus better signal-to-background ratios were observed for negatively charged inositol phosphates in complex plant extracts.

The mixing of MALDI matrices of different protonaffinities leads to suppression of matrix clusterformation and subsequently yields cleaner MS spectraof fewer background peaks in both positive andnegative detection of small molecules

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Reference

  1. Cohen LH, Gusev AI (2002) Anal Bioanal Chem 373:571–586

    Article CAS  Google Scholar 

  2. Chan TWD, Colburn AW, Derrick PJ (1991) Org Mass Spectrom 26:342–344

    Article CAS  Google Scholar 

  3. McCombie G, Knochenmuss R (2004) Anal Chem 76:4990–4997

    Article CAS  Google Scholar 

  4. Knochenmuss R, Dubois F, Dale MJ, Zenobi R (1996) Rapid Commun Mass Spectrom 10:871–877

    Article CAS  Google Scholar 

  5. Knochenmuss R, Karbach V, Wiesli U, Breuker K, Zenobi R (1998) Rapid Commun Mass Spectrom 12:529–534

    Article CAS  Google Scholar 

  6. Cheng S-W, Chan TWD (1996) Rapid Commun Mass Spectrom 10:907–910

    Article CAS  Google Scholar 

  7. Asara JM, Allison J (1999) Anal Chem 71:2866–2870

    Article CAS  Google Scholar 

  8. Simmons TA, Limbach PA (1997) Rapid Commun Mass Spectrom 11:567–572

    Article CAS  Google Scholar 

  9. Dale M, Knochenmuss R, Zenobi R (1997) Rapid Commun Mass Spectrom 11:136–142

    Article CAS  Google Scholar 

  10. Kjellstroem S, Jensen ON (2004) Anal Chem 76:5109–5117

    Article CAS  Google Scholar 

  11. Smirnov IP, Zhu X, Taylor T, Huang Y, Ross P, Papayanopoulos IA, Martin SA, Pappin DJ (2004) Anal Chem 76:2958–2965

    Article CAS  Google Scholar 

  12. Kim J-S, Kim J-Y, Kim H-J (2005) Anal Chem 77:7483–7488

    Article CAS  Google Scholar 

  13. Vaidyanathan S, Gaskell S, Goodacre R (2006) Rapid Commun Mass Spectrom 20:1192–1198

    Article CAS  Google Scholar 

  14. Sakore TD, Jain SC, Tsai C-C, Sobell HM (1977) PNAS 74:188–192

    Article CAS  Google Scholar 

  15. Garcia BA, Heaney PJ, Tang K (2002) Anal Chem 74:2083–2091

    Article CAS  Google Scholar 

  16. Krutchinesky AN, Chait BT (2002) J Am Soc Mass Spectrom 13:129–134

    Article  Google Scholar 

  17. Vermillion-Salsbury RL, Hercules DM (2002) Rapid Commun Mass Spectrom 16:1575–1581

    Article CAS  Google Scholar 

  18. Muller M, Schiller J, Petkovic M, Oehrl W, Heinze R, Wetzker R, Arnold K, Arnhold J (2001) Chem Phys Lipids 110:151–164

    Article CAS  Google Scholar 

  19. Jørgensen TJD, Bojesen G, Rahbek-Nielsen H (1998) Eur Mass Spectrom 4:39–45

    Google Scholar 

  20. Rak J, Blazejowski J, Zauhar RJ (1992) J Org Chem 57:3720–3725

    Article CAS  Google Scholar 

  21. Moncelli MR, Becucci L, Guidelli R (1994) Biophys J 66:1969–1980

    Article CAS  Google Scholar 

  22. Walton TJ, Hughes SY (1993) Rapid Commun Mass Spectrom 7:555–560

    Article CAS  Google Scholar 

Download references

Acknowledgement

We would like to thank Drs Wendy Boss, Imara Perera, and Yang-Ju Im in the Department of Botany at NCSU for their kind help in plant extract preparation.

Author information

Authors and Affiliations

  1. Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA

    Zhong Guo & Lin He

Authors
  1. Zhong Guo

    You can also search for this author inPubMed Google Scholar

  2. Lin He

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence toLin He.

Rights and permissions

About this article

Cite this article

Guo, Z., He, L. A binary matrix for background suppression in MALDI-MS of small molecules.Anal Bioanal Chem387, 1939–1944 (2007). https://doi.org/10.1007/s00216-006-1100-3

Download citation

Keywords

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp