Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Biosugar Production fromGracilaria verrucosa with Sulfamic Acid Pretreatment and Subsequent Enzymatic Hydrolysis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

In this study, sulfamic acid-catalyzed pretreatment and subsequent enzymatic hydrolysis was conducted to produce biosugar from the marine macro-algaGracilaria verrucosa. Sulfamic acid has dual active sites and is a green catalyst. Optimized sulfamic acid pretreatment at 130°C with 7.5% biomass and 100 mM sulfamic acid for 90 min yielded 39.9% total reducing sugar (TRS). Subsequent enzymatic hydrolysis yielded 69.1% TRS. These results indicate the potential of sulfamic acidcatalyzed pretreatment and subsequent enzymatic hydrolysis in producing biosugars using a biorefinery process.

This is a preview of subscription content,log in via an institution to check access.

Access this article

Log in via an institution

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.

References

  1. Khambhaty, Y., K. Mody, M.R. Gandhi, S. Thampy, P. Maiti, H. Brahmbhatt, K. Eswaran, and P. K. Ghosh (2012) Kappaphycus alvarezii as a source of bioethanol.Bioresour. Technol. 103: 180–185.

    Article CAS PubMed  Google Scholar 

  2. Kim, D. H., S. B. Lee, and G. T. Jeong (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis.Bioresour. Technol. 161: 348–353.

    Article CAS PubMed  Google Scholar 

  3. Kumar, S., R. Gupta, G. Kumar, D. Sahoo, and R. C. Kuhad (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach.Bioresour. Technol. 135: 150–156.

    Article CAS PubMed  Google Scholar 

  4. Kwon, O. M., D. H. Kim, S. K. Kim, and G. T. Jeong (2015) Production of sugars from macro-algae Gracilaria verrucosa using combined process of citric acid-catalyzed pretreatment and enzymatic hydrolysis.Algal. Res. 13: 293–297.

    Article  Google Scholar 

  5. Meinita, M. D. N., J. Y. Kang, G. T. Jeong, H. M. Koo, S. M. Park, and Y. K. Hong (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii).J. Appl. Phycol. 24: 857–862.

    Article CAS  Google Scholar 

  6. Meinita, M. D. N., B. Marhaeni, T. Winanto, G. T. Jeong, M. N. A. Khan, Y. K. Hong (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis), as potential resources for bioethanol production.J. Appl. Phycol. 25: 1957–1961.

    Article CAS  Google Scholar 

  7. Wu, F. C., J. Y. Wu, Y. J. Liao, M. Y. Wang, and I. L. Shih (2014) Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass.Bioresour. Technol. 156: 123–131.

    Article CAS PubMed  Google Scholar 

  8. Jeong, G. T. and D. H. Park (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii.Appl. Biochem. Biotech. 161: 41–52.

    Article CAS  Google Scholar 

  9. Abd-Rahim, F., H. Wasoh, M. R. Zakaria, A. Ariff, R. Kapri, N. Ramli, and L. Siew-Ling (2014) Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis.Food Hydrocolloids 42: 309–315.

    Article CAS  Google Scholar 

  10. Scordia, D., S. L. Cosentino, and T. W. Jeffries (2013) Effectiveness of dilute oxalic acid pretreatment of Miscanthus x giganteus biomass for ethanol production.Biomass Bioenerg. 59: 540–548.

    Article CAS  Google Scholar 

  11. Brosse, N., R. Hage, P. Sannigrahi, and A. Ragauskas (2010) Dilute sulfuric acid and ethanol organosolv pretreatment of Miscanthus x giganteus.Cellulose Chem. Technol. 44: 71–78.

    CAS  Google Scholar 

  12. Pedersen, M. and A. S. Meyer (2010) Lignocellulose pretreatment severity - relating pH to biomatrix opening.New Biotechnol. 27: 739–750.

    Article CAS  Google Scholar 

  13. Ra, C. H., G. T. Jeong, M. K. Shin, and S. K. Kim (2013) Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.Bioresour. Technol. 140: 421–425.

    Article CAS PubMed  Google Scholar 

  14. Rasmussen, H., H. R. Sorensen, and A. S. Meyer (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.Carbohydr. Res. 385: 45–57.

    Article CAS PubMed  Google Scholar 

  15. Jeong, G. T., S. K. Kim, and D. H. Park (2015) Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.Bioresour. Technol. 181: 1–6.

    Article CAS PubMed  Google Scholar 

  16. Percival, E. (1979) The polysaccharide of green, red and brown seaweeds: their basic structure, biosynthesis and function.Br. Phycol. J. 14: 103–117.

    Article  Google Scholar 

  17. Audrieth, L., M. Sveda, H. Sisler, and M. J. Butler (1940) Sulfamic acid, sulfamide, and related aquo-ammonosulfuric acids.Chem. Rev. 26: 49–94.

    Article CAS  Google Scholar 

  18. Benson, G. A. and W. J. Spillane (1980) Sulfamic acid and its Nsubstituted derivatives.Chem. Rev. 80: 151–186.

    Article CAS  Google Scholar 

  19. Sun, J., X. Yuan, Y. Shen, Y. Yi, B. Wang, F. Xu, and R. Sun (2015) Conversion of bamboo fiber into 5-hydroxymethylfurfural catalyzed by sulfamic acid with microwave assistance in biphasic system.Ind. Crop. Prod. 70: 266–271.

    Article CAS  Google Scholar 

  20. Rostami, A. and A. Yari (2012) Sulfamic acid as a recyclable and green catalyst for rapid and highly efficient synthesis of 2-arylbenzothiazoles in water at room temperature.J. Iran. Chem. Soc. 9: 489–493.

    Article CAS  Google Scholar 

  21. Wang, B., Y. Gu, C. Luo, T. Yang, L. Yang, and J. Suo (2004) Sulfamic acid as a cost-effective and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce amides from ketoximes without waste.Tetrahedron Lett. 45: 3369–3372.

    Article CAS  Google Scholar 

  22. Kwon, O. M., S. K. Kim, and G. T. Jeong (2016) Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.Bioprocess Biosyst. Eng. 39: 1173–1180.

    Article CAS PubMed  Google Scholar 

  23. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem. 31: 426–428.

    Article CAS  Google Scholar 

  24. Lee, S. B., S. K. Kim, Y. K. Hong, and G. T. Jeong (2016) Optimization of the production of platform chemicals and sugars from the red macroalga, Kappaphycus alvarezii.Algal Res. 13: 303–310.

    Article  Google Scholar 

  25. Jeong, G. T., C. H. Ra, Y. K. Hong, J. K. Kim, I. S. Kong, S. K. Kim, and D. H. Park (2015) Conversion of red-algaeGracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural.Bioprocess Biosyst. Eng. 38: 207–217.

    Article CAS PubMed  Google Scholar 

  26. Kim, S. W., C. H. Hong, S. W. Jeon, and H. J. Shin (2015) Highyield production of biosugars fromGracilaria verrucosa by acid and enzymatic hydrolysis processes.Bioresour. Technol. 196: 634–641.

    Article CAS PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Biotechnology, Pukyong National University, Busan, 48513, Korea

    Mi-Ra Park, Sung-Koo Kim & Gwi-Taek Jeong

Authors
  1. Mi-Ra Park
  2. Sung-Koo Kim
  3. Gwi-Taek Jeong

Corresponding author

Correspondence toGwi-Taek Jeong.

Rights and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, MR., Kim, SK. & Jeong, GT. Biosugar Production fromGracilaria verrucosa with Sulfamic Acid Pretreatment and Subsequent Enzymatic Hydrolysis.Biotechnol Bioproc E23, 302–310 (2018). https://doi.org/10.1007/s12257-018-0090-2

Download citation

Keywords

Access this article

Subscribe and save

Springer+
from ¥17,985 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Advertisement


[8]ページ先頭

©2009-2025 Movatter.jp