236Accesses
28Citations
1 Altmetric
Abstract
In this study, sulfamic acid-catalyzed pretreatment and subsequent enzymatic hydrolysis was conducted to produce biosugar from the marine macro-algaGracilaria verrucosa. Sulfamic acid has dual active sites and is a green catalyst. Optimized sulfamic acid pretreatment at 130°C with 7.5% biomass and 100 mM sulfamic acid for 90 min yielded 39.9% total reducing sugar (TRS). Subsequent enzymatic hydrolysis yielded 69.1% TRS. These results indicate the potential of sulfamic acidcatalyzed pretreatment and subsequent enzymatic hydrolysis in producing biosugars using a biorefinery process.
This is a preview of subscription content,log in via an institution to check access.
Access this article
Subscribe and save
- Starting from 10 chapters or articles per month
- Access and download chapters and articles from more than 300k books and 2,500 journals
- Cancel anytime
Buy Now
Price includes VAT (Japan)
Instant access to the full article PDF.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, books and news in related subjects, suggested using machine learning.References
Khambhaty, Y., K. Mody, M.R. Gandhi, S. Thampy, P. Maiti, H. Brahmbhatt, K. Eswaran, and P. K. Ghosh (2012) Kappaphycus alvarezii as a source of bioethanol.Bioresour. Technol. 103: 180–185.
Kim, D. H., S. B. Lee, and G. T. Jeong (2014) Production of reducing sugar from Enteromorpha intestinalis by hydrothermal and enzymatic hydrolysis.Bioresour. Technol. 161: 348–353.
Kumar, S., R. Gupta, G. Kumar, D. Sahoo, and R. C. Kuhad (2013) Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach.Bioresour. Technol. 135: 150–156.
Kwon, O. M., D. H. Kim, S. K. Kim, and G. T. Jeong (2015) Production of sugars from macro-algae Gracilaria verrucosa using combined process of citric acid-catalyzed pretreatment and enzymatic hydrolysis.Algal. Res. 13: 293–297.
Meinita, M. D. N., J. Y. Kang, G. T. Jeong, H. M. Koo, S. M. Park, and Y. K. Hong (2012) Bioethanol production from the acid hydrolysate of the carrageenophyte Kappaphycus alvarezii (cottonii).J. Appl. Phycol. 24: 857–862.
Meinita, M. D. N., B. Marhaeni, T. Winanto, G. T. Jeong, M. N. A. Khan, Y. K. Hong (2013) Comparison of agarophytes (Gelidium, Gracilaria, and Gracilariopsis), as potential resources for bioethanol production.J. Appl. Phycol. 25: 1957–1961.
Wu, F. C., J. Y. Wu, Y. J. Liao, M. Y. Wang, and I. L. Shih (2014) Sequential acid and enzymatic hydrolysis in situ and bioethanol production from Gracilaria biomass.Bioresour. Technol. 156: 123–131.
Jeong, G. T. and D. H. Park (2010) Production of sugars and levulinic acid from marine biomass Gelidium amansii.Appl. Biochem. Biotech. 161: 41–52.
Abd-Rahim, F., H. Wasoh, M. R. Zakaria, A. Ariff, R. Kapri, N. Ramli, and L. Siew-Ling (2014) Production of high yield sugars from Kappaphycus alvarezii using combined methods of chemical and enzymatic hydrolysis.Food Hydrocolloids 42: 309–315.
Scordia, D., S. L. Cosentino, and T. W. Jeffries (2013) Effectiveness of dilute oxalic acid pretreatment of Miscanthus x giganteus biomass for ethanol production.Biomass Bioenerg. 59: 540–548.
Brosse, N., R. Hage, P. Sannigrahi, and A. Ragauskas (2010) Dilute sulfuric acid and ethanol organosolv pretreatment of Miscanthus x giganteus.Cellulose Chem. Technol. 44: 71–78.
Pedersen, M. and A. S. Meyer (2010) Lignocellulose pretreatment severity - relating pH to biomatrix opening.New Biotechnol. 27: 739–750.
Ra, C. H., G. T. Jeong, M. K. Shin, and S. K. Kim (2013) Biotransformation of 5-hydroxymethylfurfural (HMF) by Scheffersomyces stipitis during ethanol fermentation of hydrolysate of the seaweed Gelidium amansii.Bioresour. Technol. 140: 421–425.
Rasmussen, H., H. R. Sorensen, and A. S. Meyer (2014) Formation of degradation compounds from lignocellulosic biomass in the biorefinery: sugar reaction mechanisms.Carbohydr. Res. 385: 45–57.
Jeong, G. T., S. K. Kim, and D. H. Park (2015) Application of solid-acid catalyst and marine macro-algae Gracilaria verrucosa to production of fermentable sugars.Bioresour. Technol. 181: 1–6.
Percival, E. (1979) The polysaccharide of green, red and brown seaweeds: their basic structure, biosynthesis and function.Br. Phycol. J. 14: 103–117.
Audrieth, L., M. Sveda, H. Sisler, and M. J. Butler (1940) Sulfamic acid, sulfamide, and related aquo-ammonosulfuric acids.Chem. Rev. 26: 49–94.
Benson, G. A. and W. J. Spillane (1980) Sulfamic acid and its Nsubstituted derivatives.Chem. Rev. 80: 151–186.
Sun, J., X. Yuan, Y. Shen, Y. Yi, B. Wang, F. Xu, and R. Sun (2015) Conversion of bamboo fiber into 5-hydroxymethylfurfural catalyzed by sulfamic acid with microwave assistance in biphasic system.Ind. Crop. Prod. 70: 266–271.
Rostami, A. and A. Yari (2012) Sulfamic acid as a recyclable and green catalyst for rapid and highly efficient synthesis of 2-arylbenzothiazoles in water at room temperature.J. Iran. Chem. Soc. 9: 489–493.
Wang, B., Y. Gu, C. Luo, T. Yang, L. Yang, and J. Suo (2004) Sulfamic acid as a cost-effective and recyclable catalyst for liquid Beckmann rearrangement, a green process to produce amides from ketoximes without waste.Tetrahedron Lett. 45: 3369–3372.
Kwon, O. M., S. K. Kim, and G. T. Jeong (2016) Potential of phosphoric acid-catalyzed pretreatment and subsequent enzymatic hydrolysis for biosugar production from Gracilaria verrucosa.Bioprocess Biosyst. Eng. 39: 1173–1180.
Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar.Anal. Chem. 31: 426–428.
Lee, S. B., S. K. Kim, Y. K. Hong, and G. T. Jeong (2016) Optimization of the production of platform chemicals and sugars from the red macroalga, Kappaphycus alvarezii.Algal Res. 13: 303–310.
Jeong, G. T., C. H. Ra, Y. K. Hong, J. K. Kim, I. S. Kong, S. K. Kim, and D. H. Park (2015) Conversion of red-algaeGracilaria verrucosa to sugars, levulinic acid and 5-hydroxymethylfurfural.Bioprocess Biosyst. Eng. 38: 207–217.
Kim, S. W., C. H. Hong, S. W. Jeon, and H. J. Shin (2015) Highyield production of biosugars fromGracilaria verrucosa by acid and enzymatic hydrolysis processes.Bioresour. Technol. 196: 634–641.
Author information
Authors and Affiliations
Department of Biotechnology, Pukyong National University, Busan, 48513, Korea
Mi-Ra Park, Sung-Koo Kim & Gwi-Taek Jeong
- Mi-Ra Park
Search author on:PubMed Google Scholar
- Sung-Koo Kim
Search author on:PubMed Google Scholar
- Gwi-Taek Jeong
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toGwi-Taek Jeong.
Rights and permissions
About this article
Cite this article
Park, MR., Kim, SK. & Jeong, GT. Biosugar Production fromGracilaria verrucosa with Sulfamic Acid Pretreatment and Subsequent Enzymatic Hydrolysis.Biotechnol Bioproc E23, 302–310 (2018). https://doi.org/10.1007/s12257-018-0090-2
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
Share this article
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative


