Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

NTRU: A ring-based public key cryptosystem

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 1423))

Included in the following conference series:

Abstract

We describe NTRU, a new public key cryptosystem. NTRU features reasonably short, easily created keys, high speed, and low memory requirements. NTRU encryption and decryption use a mixing system suggested by polynomial algebra combined with a clustering principle based on elementary probability theory. The security of the NTRU cryptosystem comes from the interaction of the polynomial mixing system with the independence of reduction modulo two relatively prime integersp andq.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Blum, S. Goldwasser,An efficient probabilistic public-key encryption scheme which hides all partial information, Advances in Cryptology: Proceedings of CRYPTO 84, Lecture Notes in Computer Science, vol. 196, Springer-Verlag, 1985, pp. 289–299.

    Google Scholar 

  2. D. Coppersmith, A. Shamir,Lattice attacks on NTRU, Preprint, April 5, 1997; presented at Eurocrypt 97.

    Google Scholar 

  3. W. Diffie, M.E. Hellman,New directions in cryptography, IEEE Trans. on Information Theory22 (1976), 644–654.

    Article MATH MathSciNet  Google Scholar 

  4. O. Goldreich, S. Goldwasser, S. Halevi,Public-key cryptosystems from lattice reduction problems, MIT — Laboratory for Computer Science preprint, November 1996.

    Google Scholar 

  5. S. Goldwasser and A. Micali,Probabilistic encryption, J. Computer and Systems Science28 (1984), 270–299.

    Article MATH MathSciNet  Google Scholar 

  6. J. Hoffstein, J. Pipher, J.H. Silverman,NTRU: A new high speed public key cryptosystem, Preprint; presented at the rump session of Crypto 96.

    Google Scholar 

  7. A.K. Lenstra, H.W. Lenstra, L. LovŚz,Factoring polynomials with polynomial coefficients, Math. Annalen261 (1982), 515–534.

    Article MATH  Google Scholar 

  8. R.J. McEliece,A public-key cryptosystem based on algebraic coding theory, JPL Pasadena, DSN Progress Reports42–44 (1978), 114–116.

    Google Scholar 

  9. R.L. Rivest, A. Shamir, L. Adleman,A method for obtaining digital signatures and public key cryptosystems, Communications of the ACM21 (1978), 120–126.

    Article MATH MathSciNet  Google Scholar 

  10. C.P. Schnorr,Block reduced lattice bases and successive minima, Combinatorics, Probability and Computing3 (1994), 507–522.

    Article MATH MathSciNet  Google Scholar 

  11. C.P. Schnorr, M. Euchner,Lattice basis reduction: improved practical algorithms and solving subset sum problems, Mathematical Programing66 (1994), 181–199.

    Article MATH MathSciNet  Google Scholar 

  12. C.P. Schnorr, H.H. Hoerner,Attacking the Chor Rivest cryptosystem by improved lattice reduction, Proc. EUROCRYPT 1995, Lecture Notes in Computer Science 921, Springer-Verlag, 1995, pp. 1–12.

    Google Scholar 

  13. J.H. Silverman,A Meet-In-The-Middle Attack on an NTRU Private Key, preprint.

    Google Scholar 

Download references

Authors
  1. Jeffrey Hoffstein
  2. Jill Pipher
  3. Joseph H. Silverman

Editor information

Joe P. Buhler

Rights and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffstein, J., Pipher, J., Silverman, J.H. (1998). NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (eds) Algorithmic Number Theory. ANTS 1998. Lecture Notes in Computer Science, vol 1423. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0054868

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp