Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Stubborn Set Intuition Explained

  • Chapter
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((TOPNOC,volume 10470))

  • 770Accesses

  • 22Citations

Abstract

This study focuses on the differences between stubborn sets and other partial order methods. First a major problem with step graphs is pointed out with an example. Then the deadlock-preserving stubborn set method is compared to the deadlock-preserving ample set and persistent set methods. Next, conditions are discussed whose purpose is to ensure that the reduced state space preserves the ordering of visible transitions, that is, transitions that may change the truth values of the propositions that the formula under verification has been built from. Finally solutions to the ignoring problem are analysed both when the purpose is to preserve only safety properties and when also liveness properties are of interest.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

References

  1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999). 314 p

    Google Scholar 

  2. Evangelista, S., Pajault, C.: Solving the ignoring problem for partial order reduction. Software Tools Technol. Transf.12(2), 155–170 (2010)

    Article  Google Scholar 

  3. Eve, J., Kurki-Suonio, R.: On computing the transitive closure of a relation. Acta Informatica8(4), 303–314 (1977)

    Article MathSciNet MATH  Google Scholar 

  4. Gibson-Robinson, T., Hansen, H., Roscoe, A.W., Wang, X.: Practical partial order reduction for CSP. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 188–203. Springer, Cham (2015). doi:10.1007/978-3-319-17524-9_14

    Google Scholar 

  5. Godefroid, P.: Using partial orders to improve automatic verification methods. In: Clarke, E.M., Kurshan, R.P. (eds.) Computer-Aided Verification 1990, AMS-ACM DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 3, pp. 321–340 (1991)

    Google Scholar 

  6. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Systems. LNCS, vol. 1032. Springer, Heidelberg (1996)

    MATH  Google Scholar 

  7. Hansen, H., Lin, S.-W., Liu, Y., Nguyen, T.K., Sun, J.: Diamonds are a girl’s best friend: partial order reduction for timed automata with abstractions. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 391–406. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9_26

    Google Scholar 

  8. Laarman, A., Pater, E., van de Pol, J., Weber, M.: Guard-based partial-order reduction. In: Bartocci, E., Ramakrishnan, C.R. (eds.) SPIN 2013. LNCS, vol. 7976, pp. 227–245. Springer, Heidelberg (2013). doi:10.1007/978-3-642-39176-7_15

    Chapter  Google Scholar 

  9. Mazurkiewicz, A.: Trace theory. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) ACPN 1986. LNCS, vol. 255, pp. 278–324. Springer, Heidelberg (1987). doi:10.1007/3-540-17906-2_30

    Chapter  Google Scholar 

  10. Peled, D.: All from one, one for all: on model checking using representatives. In: Courcoubetis, C. (ed.) CAV 1993. LNCS, vol. 697, pp. 409–423. Springer, Heidelberg (1993). doi:10.1007/3-540-56922-7_34

    Chapter  Google Scholar 

  11. Peled, D.: Ten years of partial order reduction. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 17–28. Springer, Heidelberg (1998). doi:10.1007/BFb0028727

    Chapter  Google Scholar 

  12. Rauhamaa, M.: A comparative study of methods for efficient reachability analysis. Lic. Technical Thesis, Helsinki University of Technology, Digital Systems Laboratory, Research Report A-14. Espoo, Finland (1990)

    Google Scholar 

  13. Roscoe, A.W.: Understanding Concurrent Systems. Springer, Heidelberg (2010). doi:10.1007/978-1-84882-258-0. 533 p.

    Book MATH  Google Scholar 

  14. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.1(2), 146–160 (1972)

    Article MathSciNet MATH  Google Scholar 

  15. Valmari, A.: Error detection by reduced reachability graph generation. In: Proceedings of the 9th European Workshop on Application and Theory of Petri Nets, pp. 95–122 (1988)

    Google Scholar 

  16. Valmari, A.: State Space Generation: Efficiency and Practicality. Dr. Technical Thesis, Tampere University of Technology Publications 55, Tampere (1988)

    Google Scholar 

  17. Valmari, A.: Stubborn sets for reduced state space generation. In: Rozenberg, G. (ed.) ICATPN 1989. LNCS, vol. 483, pp. 491–515. Springer, Heidelberg (1991). doi:10.1007/3-540-53863-1_36

    Chapter  Google Scholar 

  18. Valmari, A.: Stubborn set methods for process algebras. In: Peled, D., Pratt, V., Holzmann, G. (eds.) Partial Order Methods in Verification, Proceedings of a DIMACS Workshop, DIMACS Series in Discrete Mathematics and Theoretical Computer Science vol. 29, pp. 213–231. American Mathematical Society (1997)

    Google Scholar 

  19. Valmari, A.: The state explosion problem. In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998). doi:10.1007/3-540-65306-6_21

    Chapter  Google Scholar 

  20. Valmari, A.: Stop it, and be stubborn!. In: Haar, S., Meyer, R. (eds.) 15th International Conference on Application of Concurrency to System Design, pp. 10–19. IEEE Computer Society (2015)

    Google Scholar 

  21. Valmari, A.: A state space tool for concurrent system models expressed in C++. In: Nummenmaa, J., Sievi-Korte, O., Mäkinen, E. (eds.) CEUR Workshop Proceedings of SPLST 2015, Symposium on Programming Languages and Software Tools, vol. 1525, pp. 91–105 (2015)

    Google Scholar 

  22. Valmari, A.: Stop it, and be stubborn!. ACM Trans. Embed. Comput. Syst.16(2), 46:1–46:26 (2017)

    Article  Google Scholar 

  23. Valmari, A.: More stubborn set methods for process algebras. In: Gibson-Robinson, T., Hopcroft, P., Lazić, R. (eds.) Concurrency, Security, and Puzzles. LNCS, vol. 10160, pp. 246–271. Springer, Cham (2017). doi:10.1007/978-3-319-51046-0_13

    Chapter  Google Scholar 

  24. Valmari, A., Hansen, H.: Can stubborn sets be optimal? Fundam. Informaticae113(3–4), 377–397 (2011)

    MathSciNet MATH  Google Scholar 

  25. Valmari, A., Hansen, H.: Stubborn set intuition explained. In: Cabac, L., Kristensen, L.M., Rölke, H. (eds.) CEUR Workshop Proceedings of the International Workshop on Petri Nets and Software Engineering 2016, vol. 1591, pp. 213–232 (2016)

    Google Scholar 

  26. Valmari, A., Vogler, W.: Fair testing and stubborn sets. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016. LNCS, vol. 9641, pp. 225–243. Springer, Cham (2016). doi:10.1007/978-3-319-32582-8_16

    Chapter  Google Scholar 

  27. Varpaaniemi, K.: On the Stubborn Set Method in Reduced State Space Generation. Ph.D. Thesis, Helsinki University of Technology, Digital Systems Laboratory Research Report A-51, Espoo, Finland (1998)

    Google Scholar 

Download references

Acknowledgements

This study is an extended version of [25]. We thank the anonymous reviewers of both PNSE and ToPNoC for their comments.

Author information

Authors and Affiliations

  1. Tampere University of Technology, Mathematics, P.O. Box 553, 33101, Tampere, Finland

    Antti Valmari & Henri Hansen

Authors
  1. Antti Valmari
  2. Henri Hansen

Corresponding author

Correspondence toHenri Hansen.

Editor information

Editors and Affiliations

  1. Newcastle University, Newcastle upon Tyne, United Kingdom

    Maciej Koutny

  2. LIACS, Leiden University, Leiden, The Netherlands

    Jetty Kleijn

  3. Polish Academy of Sciences, Institute of Computer Science, Warsaw, Poland

    Wojciech Penczek

Rights and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Valmari, A., Hansen, H. (2017). Stubborn Set Intuition Explained. In: Koutny, M., Kleijn, J., Penczek, W. (eds) Transactions on Petri Nets and Other Models of Concurrency XII. Lecture Notes in Computer Science(), vol 10470. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55862-1_7

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp