Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 8616))
Included in the following conference series:
4464Accesses
35Citations
Abstract
We introduce thek-LWEproblem, a Learning With Errors variant of thek-SIS problem. The Boneh-Freeman reduction from SIS tok-SIS suffers from an exponential loss in k. We improve and extend it to an LWE tok-LWE reduction with a polynomial loss ink, by relying on a new technique involving trapdoors for random integer kernel lattices. Based on this hardness result, we present the first algebraic construction of a traitor tracing scheme whose security relies on the worst-case hardness of standard lattice problems. The proposed LWE traitor tracing is almost as efficient as the LWE encryption. Further, it achieves public traceability, i.e., allows the authority to delegate the tracing capability to ”untrusted” parties. To this aim, we introduce the notion ofprojective sampling family in which each sampling function is keyed and, with a projection of the key on a well chosen space, one can simulate the sampling function in a computationally indistinguishable way. The construction of a projective sampling family fromk-LWE allows us to achieve public traceability, by publishing the projected keys of the users. We believe that the new lattice tools and the projective sampling family are quite general that they may have applications in other areas.
Chapter PDF
Similar content being viewed by others
References
Aggarwal, D., Regev, O.: A note on discrete gaussian combinations of lattice vectors (2013), Draft Available at,http://arxiv.org/pdf/1308.2405v1.pdf
Agrawal, S., Gentry, C., Halevi, S., Sahai, A.: Discrete gaussian leftover hash lemma over infinite domains. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part I. LNCS, vol. 8269, pp. 97–116. Springer, Heidelberg (2013)
Ajtai, M.: Generating hard instances of lattice problems (extended abstract). In: Proc. of STOC, pp. 99–108. ACM (1996)
Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999)
Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theor. Comput. Science 48(3), 535–553 (2011)
Billet, O., Phan, D.H.: Efficient Traitor Tracing from Collusion Secure Codes. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 171–182. Springer, Heidelberg (2008)
Boneh, D., Franklin, M.K.: An efficient public key traitor scheme (Extended abstract). In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 338–353. Springer, Heidelberg (1999)
Boneh, D., Freeman, D.M.: Linearly homomorphic signatures over binary fields and new tools for lattice-based signatures. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 1–16. Springer, Heidelberg (2011), Full version available at,http://eprint.iacr.org/2010/453
Boneh, D., Waters, B.: A fully collusion resistant broadcast, trace, and revoke system. In: Proc. of ACM CCS, pp. 211–220. ACM (2006)
Boneh, D., Naor, M.: Traitor tracing with constant size ciphertext. In: Ning, P., Syverson, P.F., Jha, S. (eds.) ACM CCS 2008, pp. 501–510. ACM Press (2008)
Boneh, D., Sahai, A., Waters, B.: Fully collusion resistant traitor tracing with short ciphertexts and private keys. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 573–592. Springer, Heidelberg (2006)
Boneh, D., Zhandry, M.: Multiparty key exchange, efficient traitor tracing, and more from indistinguishability obfuscation. Cryptology ePrint Archive, Report 2013/642 (2013),http://eprint.iacr.org/
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of learning with errors. In: STOC, pp. 575–584. ACM (2013)
Chabanne, H., Phan, D.H., Pointcheval, D.: Public traceability in traitor tracing schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 542–558. Springer, Heidelberg (2005)
Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)
Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)
Garg, S., Gentry, C., Halevi, S.: Candidate multilinear maps from ideal lattices. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 1–17. Springer, Heidelberg (2013)
Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: Proc. of FOCS, pp. 40–49. IEEE Computer Society Press (2013)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proc. of STOC, pp. 197–206. ACM (2008), Full version available at,http://eprint.iacr.org/2007/432.pdf
Gordon, S.D., Katz, J., Vaikuntanathan, V.: A group signature scheme from lattice assumptions. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 395–412. Springer, Heidelberg (2010)
Kiayias, A., Pehlivanglu, S.: Encryption For Digital Content. Springer, Heidelberg (2010)
Kiayias, A., Yung, M.: Breaking and repairing asymmetric public-key traitor tracing. In: Digital Rights Management Workshop, pp. 32–50 (2002)
Kiayias, A., Yung, M.: Traitor tracing with constant transmission rate. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 450–465. Springer, Heidelberg (2002)
Komaki, H., Watanabe, Y., Hanaoka, G., Imai, H.: Efficient asymmetric self-enforcement scheme with public traceability. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 225–239. Springer, Heidelberg (2001)
Langlois, A., Stehlé, D., Steinfeld, R.: GGHLite: More efficient multilinear maps from ideal lattices. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 239–256. Springer, Heidelberg (2014)
Langlois, A., Stehlé, D., Steinfeld, R.: Improved and simplified security proofs in lattice-based cryptography: using the Rényi divergence rather than the statistical distance (2014); Available on the webpages of the authors.
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 43 (2013)
Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput 37(1), 267–302 (2007)
Micciancio, D., Regev, O.: Lattice-based cryptography. In: Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.) Post-Quantum Cryptography, pp. 147–191. Springer, Heidelberg (2009)
Naor, M., Pinkas, B.: Efficient trace and revoke schemes. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 1–20. Springer, Heidelberg (2001)
O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011)
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: Proc. of STOC, pp. 333–342. ACM (2009)
Peikert, C.: An efficient and parallel gaussian sampler for lattices. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 80–97. Springer, Heidelberg (2010)
Pfitzmann, B.: Trials of traced traitors. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 49–64. Springer, Heidelberg (1996)
Pfitzmann, B., Waidner, M.: Asymmetric fingerprinting for larger collusions. In: ACM CCS 1997, pp. 151–160. ACM Press (April 1997)
Phan, D.H., Safavi-Naini, R., Tonien, D.: Generic construction of hybrid public key traitor tracing with full-public-traceability. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 264–275. Springer, Heidelberg (2006)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proc. of STOC, pp. 84–93. ACM (2005)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6) (2009)
Regev, O.: The learning with errors problem. In: Invited survey in CCC 2010 (2010),http://www.cims.nyu.edu/~regev/
Sirvent, T.: Traitor tracing scheme with constant ciphertext rate against powerful pirates. In: Augot, D., Sendrier, N., Tillich, J.-P. (eds.) Workshop on Coding and Cryptography—WCC 2007, pp. 379–388 (April 2007)
Watanabe, Y., Hanaoka, G., Imai, H.: Efficient asymmetric public-key traitor tracing without trusted agents. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 392–407. Springer, Heidelberg (2001)
Author information
Authors and Affiliations
Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore
San Ling
Laboratoire LAGA (CNRS, U. Paris 8, U. Paris 13), U. Paris 8, France
Duong Hieu Phan
Laboratoire LIP (U. Lyon, CNRS, ENSL, INRIA, UCBL), ENS de Lyon, France
Damien Stehlé
Faculty of Information Technology, Monash University, Clayton, Australia
Ron Steinfeld
- San Ling
Search author on:PubMed Google Scholar
- Duong Hieu Phan
Search author on:PubMed Google Scholar
- Damien Stehlé
Search author on:PubMed Google Scholar
- Ron Steinfeld
Search author on:PubMed Google Scholar
Editor information
Editors and Affiliations
Yahoo Labs, 701 Firstz Avenue, 94089, Sunnyvale, CA, USA
Juan A. Garay
The City College of New York, 160 Convent Avenue, 10031, New York, NY, USA
Rosario Gennaro
Rights and permissions
Copyright information
© 2014 International Association for Cryptologic Research
About this paper
Cite this paper
Ling, S., Phan, D.H., Stehlé, D., Steinfeld, R. (2014). Hardness ofk-LWE and Applications in Traitor Tracing. In: Garay, J.A., Gennaro, R. (eds) Advances in Cryptology – CRYPTO 2014. CRYPTO 2014. Lecture Notes in Computer Science, vol 8616. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44371-2_18
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-662-44370-5
Online ISBN:978-3-662-44371-2
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative