Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Learning with Rounding, Revisited

New Reduction, Properties and Applications

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 8042))

Included in the following conference series:

  • 7306Accesses

  • 137Citations

Abstract

The learning with rounding (LWR) problem, introduced by Banerjee, Peikert and Rosen at EUROCRYPT ’12, is a variant of learning with errors (LWE), where one replaces random errors with deterministic rounding. The LWR problem was shown to be as hard as LWE for a setting of parameters where the modulus and modulus-to-error ratio are super-polynomial. In this work we resolve the main open problem and give a new reduction that works for a larger range of parameters, allowing for a polynomial modulus and modulus-to-error ratio. In particular, a smaller modulus gives us greater efficiency, and a smaller modulus-to-error ratio gives us greater security, which now follows from the worst-case hardness of GapSVP with polynomial (rather than super-polynomial) approximation factors.

As a tool in the reduction, we show that there is a “lossy mode” for the LWR problem, in which LWR samples only reveal partial information about the secret. This property gives us several interesting new applications, including a proof that LWR remains secure with weakly random secrets of sufficient min-entropy, and very simple constructions of deterministic encryption, lossy trapdoor functions and reusable extractors.

Our approach is inspired by a technique of Goldwasser et al. from ICS ’10, which implicitly showed the existence of a “lossy mode” for LWE. By refining this technique, we also improve on the parameters of that work to only requiring a polynomial (instead of super-polynomial) modulus and modulus-to-error ratio.

This work was partly funded by the European Research Council under ERC Starting Grant 259668-PSPC and ERC Advanced Grant 321310-PERCY. Parts of this work were done while the second authors was at IST Austria, and the last author was at IBM Research, T.J. Watson. A full version of this paper is available online [1].

Similar content being viewed by others

Keywords

References

  1. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with Rounding, Revisited: New Reduction, Properties and Applications. Cryptology ePrint Archive, Report 2013/098 (2013)

    Google Scholar 

  2. Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC, pp. 84–93. ACM (2005)

    Google Scholar 

  3. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In: Dwork, C. (ed.) STOC, pp. 197–206. ACM (2008)

    Google Scholar 

  4. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Lyubashevsky, V., Peikert, C., Regev, O.: On Ideal Lattices and Learning with Errors over Rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional Encryption for Inner Product Predicates from Learning with Errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Brakerski, Z., Vaikuntanathan, V.: Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Lindner, R., Peikert, C.: Better Key Sizes (and Attacks) for LWE-Based Encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Succinct Functional Encryption and Applications: Reusable Garbled Circuits and Beyond. Cryptology ePrint Archive, Report 2012/733 (2012)

    Google Scholar 

  10. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom Functions and Lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Lyubashevsky, V.: Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Rückert, M.: Lattice-Based Blind Signatures. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 413–430. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Lyubashevsky, V.: Lattice Signatures without Trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Katz, J., Vaikuntanathan, V.: Smooth Projective Hashing and Password-Based Authenticated Key Exchange from Lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 636–652. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Peikert, C., Rosen, A.: Efficient Collision-Resistant Hashing from Worst-Case Assumptions on Cyclic Lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Peikert, C.: Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem: Extended Abstract. In: Mitzenmacher, M. (ed.) STOC, pp. 333–342. ACM (2009)

    Google Scholar 

  18. Xie, X., Xue, R., Zhang, R.: Deterministic Public Key Encryption and Identity-Based Encryption from Lattices in the Auxiliary-Input Setting. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 1–18. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Brakersi, Z., Langlois, A., Peikert, C., Regev, O., Stehl, D.: Classical Hardness of Learning with Errors. In: STOC (2013)

    Google Scholar 

  20. Goldwasser, S., Kalai, Y.T., Peikert, C., Vaikuntanathan, V.: Robustness of the Learning with Errors Assumption. In: Yao, A.C.C. (ed.) ICS, pp. 230–240. Tsinghua University Press (2010)

    Google Scholar 

  21. Dodis, Y., Kalai, Y.T., Lovett, S.: On Cryptography with Auxiliary Input. In: Mitzenmacher, M. (ed.) STOC, pp. 621–630. ACM (2009)

    Google Scholar 

  22. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. In: Dwork, C. (ed.) STOC, pp. 187–196. ACM (2008)

    Google Scholar 

  23. Peikert, C., Waters, B.: Lossy Trapdoor Functions and Their Applications. SIAM J. Comput. 40(6), 1803–1844 (2011)

    Article MathSciNet MATH  Google Scholar 

  24. Mol, P., Yilek, S.: Chosen-Ciphertext Security from Slightly Lossy Trapdoor Functions. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 296–311. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  25. Fuller, B., O’Neill, A., Reyzin, L.: A Unified Approach to Deterministic Encryption: New Constructions and a Connection to Computational Entropy. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 582–599. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Ajtai, M.: Generating Hard Instances of the Short Basis Problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  27. Alwen, J., Peikert, C.: Generating Shorter Bases for Hard Random Lattices. Theory Comput. Syst. 48(3), 535–553 (2011)

    Article MathSciNet MATH  Google Scholar 

  28. Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Bellare, M., Kiltz, E., Peikert, C., Waters, B.: Identity-Based (Lossy) Trapdoor Functions and Applications. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 228–245. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and Efficiently Searchable Encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535–552. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  31. Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic Encryption: Definitional Equivalences and Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 360–378. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  32. Boldyreva, A., Fehr, S., O’Neill, A.: On Notions of Security for Deterministic Encryption, and Efficient Constructions without Random Oracles. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 335–359. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. Brakerski, Z., Segev, G.: Better Security for Deterministic Public-Key Encryption: The Auxiliary-Input Setting. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 543–560. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  34. Döttling, N., Müller-Quade, J.: Lossy Codes and a New Variant of the Learning-With-Errors Problem. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 18–34. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  35. Micciancio, D., Peikert, C.: Hardness of SIS and LWE with Small Parameters. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 21–39. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  36. Renner, R., Wolf, S.: Smooth Rényi Entropy and Applications. In: ISIT, vol. 4, p. 233 (2004)

    Google Scholar 

  37. Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. ETH Zurich, Switzerland

    Joël Alwen

  2. IBM Research – Zurich, Switzerland

    Stephan Krenn

  3. Institute of Science and Technology Austria, Austria

    Krzysztof Pietrzak

  4. Northeastern University, USA

    Daniel Wichs

Authors
  1. Joël Alwen
  2. Stephan Krenn
  3. Krzysztof Pietrzak
  4. Daniel Wichs

Editor information

Editors and Affiliations

  1. Boston University and Tel Aviv University, 111 Cummington Street, 02215, Boston, MA, USA

    Ran Canetti

  2. AT&T Labs – Research, Florham Park, NJ, USA

    Juan A. Garay

Rights and permissions

Copyright information

© 2013 International Association for Cryptologic Research

About this paper

Cite this paper

Alwen, J., Krenn, S., Pietrzak, K., Wichs, D. (2013). Learning with Rounding, Revisited. In: Canetti, R., Garay, J.A. (eds) Advances in Cryptology – CRYPTO 2013. CRYPTO 2013. Lecture Notes in Computer Science, vol 8042. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40041-4_4

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp