Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Toolkit for Ring-LWE Cryptography

  • Conference paper

Abstract

Recent advances in lattice cryptography, mainly stemming from the development of ring-based primitives such as ring-LWE, have made it possible to design cryptographic schemes whose efficiency is competitive with that of more traditional number-theoretic ones, along with entirely new applications like fully homomorphic encryption. Unfortunately, realizing the full potential of ring-based cryptography has so far been hindered by a lack of practical algorithms and analytical tools for working in this context. As a result, most previous works have focused on very special classes of rings such as power-of-two cyclotomics, which significantly restricts the possible applications.

We bridge this gap by introducing a toolkit of fast, modular algorithms and analytical techniques that can be used in a wide variety of ring-based cryptographic applications, particularly those built around ring-LWE. Our techniques yield applications that work inarbitrary cyclotomic rings, withno loss in their underlying worst-case hardness guarantees, and very little loss in computational efficiency, relative to power-of-two cyclotomics. To demonstrate the toolkit’s applicability, we develop two illustrative applications: a public-key cryptosystem and a “somewhat homomorphic” symmetric encryption scheme. Both apply to arbitrary cyclotomics, have tight parameters, and very efficient implementations.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Agrawal, S., Boneh, D., Boyen, X.: Efficient lattice (H)IBE in the standard model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. Theory of Computing Systems 48(3), 535–553 (2011); Preliminary version in STACS 2009

    Google Scholar 

  3. Applebaum, B., Cash, D., Peikert, C., Sahai, A.: Fast cryptographic primitives and circular-secure encryption based on hard learning problems. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 595–618. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Babai, L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1), 1–13 (1986); Preliminary version in Mehlhorn, K. (ed.) STACS 1985. LNCS, vol. 182, pp. 13–20. Springer, Heidelberg (1984)

    Chapter  Google Scholar 

  5. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Bosma, W.: Canonical bases for cyclotomic fields. Appl. Algebra Eng. Commun. Comput. 1, 125–134 (1990)

    Article MathSciNet MATH  Google Scholar 

  7. Boyen, X.: Lattice mixing and vanishing trapdoors: A framework for fully secure short signatures and more. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 499–517. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: ICTS, pp. 309–325 (2012)

    Google Scholar 

  9. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. J. Cryptology 25(4), 601–639(2010); Preliminary version in Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Ducas, L., Durmus, A.: Ring-LWE in polynomial rings. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 34–51. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Erdös, P.: On the coefficients of the cyclotomic polynomial. Bulletin of the American Mathematical Society 52(2), 179–184 (1946)

    Article MathSciNet MATH  Google Scholar 

  13. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford University (2009),http://crypto.stanford.edu/craig

  14. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–178 (2009)

    Google Scholar 

  15. Gentry, C.: Toward basing fully homomorphic encryption on worst-case hardness. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 116–137. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in BGV-style homomorphic encryption. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 19–37. Springer, Heidelberg (2012), Full version athttp://eprint.iacr.org/2012/240

    Chapter  Google Scholar 

  17. Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465–482. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R. (ed.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)

    Google Scholar 

  19. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC, pp. 197–206 (2008)

    Google Scholar 

  20. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: A signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  21. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 598–616. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Lyubashevsky, V., Micciancio, D.: Asymptotically efficient lattice-based digital signatures. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 37–54. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  25. Lyubashevsky, V., Micciancio, D., Peikert, C., Rosen, A.: SWIFFT: A modest proposal for FFT hashing. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp. 54–72. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  26. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  27. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Computational Complexity 16(4), 365–411 (2002); Preliminary version in FOCS 2002

    Google Scholar 

  28. Micciancio, D., Peikert, C.: Trapdoors for lattices: Simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  29. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC, pp. 333–342 (2009)

    Google Scholar 

  30. Peikert, C., Rosen, A.: Lattices that admit logarithmic worst-case to average-case connection factors. In: STOC, pp. 478–487 (2007)

    Google Scholar 

  31. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. J. ACM 56(6), 1–40 (2005); Preliminary version in STOC

    Google Scholar 

  32. Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Cryptology ePrint Archive, Report 2011/133 (2011),http://eprint.iacr.org/

  33. Stehlé, D., Steinfeld, R.: Making NTRU as secure as worst-case problems over ideal lattices. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 27–47. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  34. Stehlé, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. INRIA and École Normale Supérieure, Paris, France

    Vadim Lyubashevsky

  2. Georgia Institute of Technology, USA

    Chris Peikert

  3. Courant Institute, New York University, USA

    Oded Regev

Authors
  1. Vadim Lyubashevsky
  2. Chris Peikert
  3. Oded Regev

Editor information

Editors and Affiliations

  1. Dept. of Electrical and Information Technology, Lund University, P.O. Box 118, 221 00, Lund, Sweden

    Thomas Johansson

  2. Départment d’informatique, Ecole normale supérieure, 45, rue d’Ulm, 75230, Paris Cedex 05, France

    Phong Q. Nguyen

Rights and permissions

Copyright information

© 2013 International Association for Cryptologic Research

About this paper

Cite this paper

Lyubashevsky, V., Peikert, C., Regev, O. (2013). A Toolkit for Ring-LWE Cryptography. In: Johansson, T., Nguyen, P.Q. (eds) Advances in Cryptology – EUROCRYPT 2013. EUROCRYPT 2013. Lecture Notes in Computer Science, vol 7881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38348-9_3

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp