Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

COALA – Correlation-Aware Active Learning of Link Specifications

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNISA,volume 7882))

Included in the following conference series:

  • 3775Accesses

  • 17Citations

Abstract

Link Discovery plays a central role in the creation of knowledge bases that abide by the five Linked Data principles. Over the last years, several active learning approaches have been developed and used to facilitate the supervised learning of link specifications. Yet so far, these approaches have not taken the correlation between unlabeled examples into account when requiring labels from their user. In this paper, we address exactly this drawback by presenting the concept of the correlation-aware active learning of link specifications. We then present two generic approaches that implement this concept. The first approach is based on graph clustering and can make use of intra-class correlation. The second relies on the activation-spreading paradigm and can make use of both intra- and inter-class correlations. We evaluate the accuracy of these approaches and compare them against a state-of-the-art link specification learning approach in ten different settings. Our results show that our approaches outperform the state of the art by leading to specifications with higher F-scores.

Similar content being viewed by others

Keywords

References

  1. Auer, S., Lehmann, J., Ngonga Ngomo, A.-C.: Introduction to linked data and its lifecycle on the web. In: Polleres, A., d’Amato, C., Arenas, M., Handschuh, S., Kroner, P., Ossowski, S., Patel-Schneider, P. (eds.) Reasoning Web 2011. LNCS, vol. 6848, pp. 1–75. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  2. Bodó, Z., Minier, Z., Csató, L.: Active learning with clustering. Journal of Machine Learning Research - Proceedings Track 16, 127–139 (2011)

    Google Scholar 

  3. Euzenat, J., Ferrara, A., van Hage, W.R., Hollink, L., Meilicke, C., Nikolov, A., Ritze, D., Scharffe, F., Shvaiko, P., Stuckenschmidt, H., Sváb-Zamazal, O., dos Santos, C.T.: Results of the ontology alignment evaluation initiative 2011. In: OM (2011)

    Google Scholar 

  4. de Freitas, J., Pappa, G., da Silva, A., Gonçalves, M., Moura, E., Veloso, A., Laender, A., de Carvalho, M.: Active learning genetic programming for record deduplication. In: 2010 IEEE Congress on Evolutionary Computation Evolutionary Computation (CEC), pp. 1–8 (2010)

    Google Scholar 

  5. Isele, R., Bizer, C.: Learning linkage rules using genetic programming. In: OM. CEUR Workshop Proceedings, vol. 814 (2011)

    Google Scholar 

  6. Isele, R., Jentzsch, A., Bizer, C.: Efficient multidimensional blocking for link discovery without losing recall. In: Marian, A., Vassalos, V. (eds.) WebDB (2011)

    Google Scholar 

  7. Isele, R., Jentzsch, A., Bizer, C.: Active learning of expressive linkage rules for the web of data. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.) ICWE 2012. LNCS, vol. 7387, pp. 411–418. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Köpcke, H., Thor, A., Rahm, E.: Comparative evaluation of entity resolution approaches with fever. Proc. VLDB Endow. 2(2), 1574–1577 (2009)

    Google Scholar 

  9. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBpedia SPARQL Benchmark – Performance Assessment with Real Queries on Real Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 454–469. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Ngonga Ngomo, A.C.: Parameter-free clustering of protein-protein interaction graphs. In: Proceedings of MLSB Symposium (2010)

    Google Scholar 

  11. Ngonga Ngomo, A.-C.: Link Discovery with Guaranteed Reduction Ratio in Affine Spaces with Minkowski Measures. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 378–393. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  12. Ngonga Ngomo, A.C.: On link discovery using a hybrid approach. Journal on Data Semantics 1, 203–217 (2012)

    Article  Google Scholar 

  13. Ngonga Ngomo, A.C., Auer, S.: LIMES - A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data. In: Proceedings of IJCAI, pp. 2312–2317 (2011)

    Google Scholar 

  14. Ngonga Ngomo, A.C., Lehmann, J., Auer, S., Höffner, K.: RAVEN – Active Learning of Link Specifications. In: Proceedings of OM@ISWC (2011)

    Google Scholar 

  15. Ngonga Ngomo, A.-C., Lyko, K.: EAGLE: Efficient active learning of link specifications using genetic programming. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 149–163. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Ngonga Ngomo, A.-C., Schumacher, F.: BorderFlow: A local graph clustering algorithm for natural language processing. In: Gelbukh, A. (ed.) CICLing 2009. LNCS, vol. 5449, pp. 547–558. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Nikolov, A., d’Aquin, M., Motta, E.: Unsupervised learning of link discovery configuration. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) ESWC 2012. LNCS, vol. 7295, pp. 119–133. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Settles, B.: Active learning literature survey. Computer Sciences Technical Report 1648, University of Wisconsin–Madison (2009)

    Google Scholar 

  19. Shekarpour, S., Auer, S., Ngonga Ngomo, A.C., Gerber, D., Hellmann, S., Stadler, C.: Keyword-driven sparql query generation leveraging background knowledge. In: International Conference on Web Intelligence (2011)

    Google Scholar 

  20. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.-C., Gerber, D., Cimiano, P.: Sparql template-based question answering. In: Proceedings of WWW (2012)

    Google Scholar 

  21. Xiao, C., Wang, W., Lin, X., Yu, J.X.: Efficient similarity joins for near duplicate detection. In: WWW, pp. 131–140 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, AKSW Research Group, University of Leipzig, Germany

    Axel-Cyrille Ngonga Ngomo, Klaus Lyko & Victor Christen

Authors
  1. Axel-Cyrille Ngonga Ngomo
  2. Klaus Lyko
  3. Victor Christen

Editor information

Editors and Affiliations

  1. CITEC, University of Bielefeld, 33615, Bielefeld, Germany

    Philipp Cimiano

  2. Universidad Politécnica de Madrid, 28660, Boadilla del Monte, Spain

    Oscar Corcho

  3. National Research Council, 00136, Rome, Italy

    Valentina Presutti

  4. Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands

    Laura Hollink

  5. Technische Universität Dresden, 01069, Dresden, Germany

    Sebastian Rudolph

Rights and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ngomo, AC.N., Lyko, K., Christen, V. (2013). COALA – Correlation-Aware Active Learning of Link Specifications. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds) The Semantic Web: Semantics and Big Data. ESWC 2013. Lecture Notes in Computer Science, vol 7882. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38288-8_30

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp