Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 7658))
Included in the following conference series:
3991Accesses
28Citations
Abstract
In this paper, we discuss solving the DLP overGF(36·97) by using the function field sieve (FFS) for breaking paring-based cryptosystems using theηT pairing overGF(397). The extension degree 97 has been intensively used in benchmarking tests for the implementation of theηT pairing, and the order (923-bit) ofGF(36·97) is substantially larger than the previous world record (676-bit) of solving the DLP by using the FFS. We implemented the FFS for the medium prime case, and proposed several improvements of the FFS. Finally, we succeeded in solving the DLP overGF(36·97). The entire computational time requires about 148.2 days using 252 CPU cores.
The full-version of this paper is appeared in [19].
Chapter PDF
Similar content being viewed by others
References
Adleman, L.M.: The Function Field Sieve. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)
Adleman, L.M., Huang, M.-D.A.: Function field sieve method for discrete logarithms over finite fields. Inform. and Comput. 151, 5–16 (1999)
Ahmadi, O., Hankerson, D., Menezes, A.: Software Implementation of Arithmetic in\(F_{3^m}\). In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 85–102. Springer, Heidelberg (2007)
Aoki, K., Shimoyama, T., Ueda, H.: Experiments on the Linear Algebra Step in the Number Field Sieve. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 58–73. Springer, Heidelberg (2007)
Barreto, P.S.L.M., Galbraith, S., ÓhÉigeartaigh, C., Scott, M.: Efficient pairing computation on supersingular Abelian varieties. Des., Codes Cryptogr. 42(3), 239–271 (2007)
Barreto, P.S.L.M., Kim, H.Y., Lynn, B., Scott, M.: Efficient Algorithms for Pairing-Based Cryptosystems. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 354–368. Springer, Heidelberg (2002)
Beuchat, J.-L., Brisebarre, N., Detrey, J., Okamoto, E.: Arithmetic Operators for Pairing-Based Cryptography. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 239–255. Springer, Heidelberg (2007)
Beuchat, J.-L., Brisebarre, N., Detrey, J., Okamoto, E., Shirase, M., Takagi, T.: Algorithms and arithmetic operators for computing theηT pairing in characteristic three. IEEE Trans. Comput. 57(11), 1454–1468 (2008)
Beuchat, J.-L., Brisebarre, N., Shirase, M., Takagi, T., Okamoto, E.: A Coprocessor for the Final Exponentiation of theηT Pairing in Characteristic Three. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547, pp. 25–39. Springer, Heidelberg (2007)
Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)
Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)
Boneh, D., Gentry, C., Waters, B.: Collusion Resistant Broadcast Encryption with Short Ciphertexts and Private Keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005)
Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)
Bos, J.W., Kaihara, M.E., Kleinjung, T., Lenstra, A.K., Montgomery, P.L.: Solving a 112-bit prime elliptic curve discrete logarithm problem on game consoles using sloppy reduction. International Journal of Applied Cryptography 2(3), 212–228 (2012)
Cavallar, S.: Strategies in Filtering in the Number Field Sieve. In: Bosma, W. (ed.) ANTS-IV. LNCS, vol. 1838, pp. 209–231. Springer, Heidelberg (2000)
Gordon, D.M., McCurley, K.S.: Massively Parallel Computation of Discrete Logarithms. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 312–323. Springer, Heidelberg (1993)
Granger, R., Page, D., Stam, M.: Hardware and software normal basis arithmetic for pairing-based cryptography in characteristic three. IEEE Trans. Comput. 54(7), 852–860 (2005)
Hankerson, D., Menezes, A., Scott, M.: Software implementation of pairings. In: Identity-Based Cryptography, pp. 188–206 (2009)
Hayashi, T., Shimoyama, T., Shinohara, N., Takagi, T.: Breaking pairing-based cryptosystems usingηT pairing overGF(397). Cryptology ePrint Archive, Report 2012/345 (2012)
Hayashi, T., Shinohara, N., Wang, L., Matsuo, S., Shirase, M., Takagi, T.: Solving a 676-bit Discrete Logarithm Problem inGF(36n). In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 351–367. Springer, Heidelberg (2010)
Joux, A.: A One Round Protocol for Tripartite Diffie-Hellman. In: Bosma, W. (ed.) ANTS-IV. LNCS, vol. 1838, pp. 385–394. Springer, Heidelberg (2000)
Joux, A., et al.: Discrete logarithms in GF(2607) and GF(2613). Posting to the Number Theory List (2005),http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0509&L=nmbrthry&T=0&P=3690
Joux, A., Lercier, R.: The Function Field Sieve Is Quite Special. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg (2002)
Joux, A., Lercier, R.: The Function Field Sieve in the Medium Prime Case. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer, Heidelberg (2006)
Kawahara, Y., Aoki, K., Takagi, T.: Faster Implementation ofηT Pairing overGF(3m) Using Minimum Number of Logical Instructions forGF(3)-addition. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 282–296. Springer, Heidelberg (2008)
Kleinjung, T., Aoki, K., Franke, J., Lenstra, A.K., Thomé, E., Bos, J.W., Gaudry, P., Kruppa, A., Montgomery, P.L., Osvik, D.A., te Riele, H., Timofeev, A., Zimmermann, P.: Factorization of a 768-Bit RSA Modulus. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 333–350. Springer, Heidelberg (2010)
Menezes, A., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve logarithms to logarithms in a finite field. IEEE Trans. IT 39(5), 1639–1646 (1993)
Okamoto, T., Takashima, K.: Fully Secure Functional Encryption with General Relations from the Decisional Linear Assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)
Pollard, J.M.: The lattice sieve. In: The development of the number field sieve. LNIM, vol. 1554, pp. 43–49 (1993)
Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)
Shinohara, N., Shimoyama, T., Hayashi, T., Takagi, T.: Key Length Estimation of Pairing-Based Cryptosystems usingηT Pairing. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232, pp. 228–244. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Kyushu University, Japan
Takuya Hayashi & Tsuyoshi Takagi
FUJITSU LABORATORIES Ltd., Japan
Takeshi Shimoyama
National Institute of Information and Communications Technology, Japan
Naoyuki Shinohara
- Takuya Hayashi
Search author on:PubMed Google Scholar
- Takeshi Shimoyama
Search author on:PubMed Google Scholar
- Naoyuki Shinohara
Search author on:PubMed Google Scholar
- Tsuyoshi Takagi
Search author on:PubMed Google Scholar
Editor information
Editors and Affiliations
Tsinghua University, 30 Shuangqing Road, 100084, Beijing, China
Xiaoyun Wang
Central Research Laboratories, NEC, 1754 Shimonumabe Nakahara, 211-8666, Kawasaki, Japan
Kazue Sako
Rights and permissions
Copyright information
© 2012 International Association for Cryptologic Research
About this paper
Cite this paper
Hayashi, T., Shimoyama, T., Shinohara, N., Takagi, T. (2012). Breaking Pairing-Based Cryptosystems UsingηT Pairing overGF(397). In: Wang, X., Sako, K. (eds) Advances in Cryptology – ASIACRYPT 2012. ASIACRYPT 2012. Lecture Notes in Computer Science, vol 7658. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34961-4_5
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-34960-7
Online ISBN:978-3-642-34961-4
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative