Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Efficient Lattice (H)IBE in the Standard Model

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 6110))

Abstract

We construct an efficient identity based encryption system based on the standard learning with errors (LWE) problem. Our security proof holds in the standard model. The key step in the construction is a family of lattices for which there are two distinct trapdoors for finding short vectors. One trapdoor enables the real system to generate short vectors in all lattices in the family. The other trapdoor enables the simulator to generate short vectors for all lattices in the family except for one. We extend this basic technique to an adaptively-secure IBE and a Hierarchical IBE.

A full version of this paper is available at [1].

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the standard model (2010); Full version of this paper. Available on the authors’ web page

    Google Scholar 

  2. Agrawal, S., Boneh, D., Boyen, X.: Lattice basis delegation in fixed dimension and shorter-ciphertext hierarchical IBE (2010) (manuscript)

    Google Scholar 

  3. Agrawal, S., Boyen, X.: Identity-based encryption from lattices in the standard model (2009) (manuscript),http://www.cs.stanford.edu/~xb/ab09/

  4. Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  5. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: Proc. of STACS 2009, pp. 75–86 (2009)

    Google Scholar 

  6. Boneh, D., Boyen, X.: Efficient selective-id secure identity-based encryption without random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)

    Google Scholar 

  7. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer, Heidelberg (2004)

    Google Scholar 

  8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption without pairings. In: Proc. of FOCS 2007, pp. 647–657 (2007)

    Google Scholar 

  10. Boyen, X.: Lattices niçoises and vanishing trapdoors: A framework for fully secure short signatures and more. In: PKC 2010. LNCS. Springer, Heidelberg (to appear, 2010)

    Google Scholar 

  11. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. J. Cryptol. 20(3), 265–294 (2007)

    Article MATH MathSciNet  Google Scholar 

  12. Cash, D., Hofheinz, D., Kiltz, E.: How to delegate a lattice basis. Cryptology ePrint Archive, Report 2009/351 (2009),http://eprint.iacr.org/

  13. Cocks, C.: An identity based encryption scheme based on quadratic residues. In: Proceedings of the 8th IMA Conference, pp. 26–28 (2001)

    Google Scholar 

  14. Cramer, R., Damgard, I.: On the amortized complexity of zero-knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate strong keys from biometrics and other noisy data. SIAM Journal on Computing 38(1), 97–139 (2008)

    Article MATH MathSciNet  Google Scholar 

  16. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proc. of STOC 2008, pp. 197–206 (2008)

    Google Scholar 

  17. Gentry, C.: Practical identity-based encryption without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 445–464. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Hoeffding, W.: Probability inequalities for sums of bounded random variables. Journal of the American Statistical Association 58(301), 13–30 (1963)

    Article MATH MathSciNet  Google Scholar 

  20. Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 466–481. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  21. Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: a cryptographic perspective, vol. 671. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  23. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. In: Proc. of FOCS 2004, pp. 372–381 (2004)

    Google Scholar 

  24. Peikert, C.: Bonsai trees (or, arboriculture in lattice-based cryptography). Cryptology ePrint Archive, Report 2009/359 (2009),http://eprint.iacr.org/

  25. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem: extended abstract. In: Proc. of STOC 2009, pp. 333–342. ACM, New York (2009)

    Google Scholar 

  26. Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proc. of STOC 2005, pp. 84–93 (2005)

    Google Scholar 

  28. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)

    Chapter  Google Scholar 

  29. Shoup, V.: A Computational Introduction to Number Theory and Algebra, 2nd edn. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  30. Stehle, D., Steinfeld, R., Tanaka, K., Xagawa, K.: Efficient public-key encryption based on ideal lattices. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 617–635. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  31. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)

    Google Scholar 

  32. Waters, B.: Dual key encryption: Realizing fully secure IBE and HIBE under simple assumption. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Texas, Austin,  

    Shweta Agrawal

  2. Stanford University,  

    Dan Boneh

  3. Université de Liège, Belgium

    Xavier Boyen

Authors
  1. Shweta Agrawal
  2. Dan Boneh
  3. Xavier Boyen

Editor information

Editors and Affiliations

  1. Orange Labs/MAPS/STT, 38–40 rue du Général Leclerc, 92794, Issy les Moulineaux Cedex 9, France

    Henri Gilbert

Rights and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Agrawal, S., Boneh, D., Boyen, X. (2010). Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (eds) Advances in Cryptology – EUROCRYPT 2010. EUROCRYPT 2010. Lecture Notes in Computer Science, vol 6110. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13190-5_28

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp