Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNSC,volume 6056))

Included in the following conference series:

Abstract

We present a fully homomorphic encryption scheme which has both relatively small key and ciphertext size. Our construction follows that of Gentry by producing a fully homomorphic scheme from a “somewhat” homomorphic scheme. For the somewhat homomorphic scheme the public and private keys consist of two large integers (one of which is shared by both the public and private key) and the ciphertext consists of one large integer. As such, our scheme has smaller message expansion and key size than Gentry’s original scheme. In addition, our proposal allows efficient fully homomorphic encryption over any field of characteristic two.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Buchmann, J.: Zur Komplexität der Berechungung von Einheiten und Klassenzahlen algebraischer Zahlkörper, Habilitationsschrift (1987)

    Google Scholar 

  2. Buchmann, J.: A subexponential algorithm for the determination of class groups and regulators of algebraic number fields. Séminaire de Théorie des Nombres – Paris 1988-89, 27–41 (1990)

    Google Scholar 

  3. Buchmann, J., Maurer, M., Möller, B.: Cryptography based on number fields with large regulator. Journal de Théorie des Nombres de Bordeaux 12, 293–307 (2000)

    MATH  Google Scholar 

  4. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer GTM 138 (1993)

    Google Scholar 

  5. Ding, J., Lindner, R.: Identifying ideal lattices. IACR eprint 2009/322

    Google Scholar 

  6. Von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  7. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Symposium on Theory of Computing – STOC 2009, pp. 169–178. ACM, New York (2009)

    Chapter  Google Scholar 

  8. Gentry, C.: A fully homomorphic encryption scheme, (manuscript) (2009)

    Google Scholar 

  9. Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)

    Google Scholar 

  10. Hallgren, S.: Fast quantum algorithms for computing the unit group and class group of a number field. In: Symposium on Theory of Computing – STOC 2005, pp. 468–474. ACM, New York (2005)

    Chapter  Google Scholar 

  11. Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Ann. 261, 513–534 (1982)

    Google Scholar 

  13. Nguyen, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  14. Thiel, C.: On the complexity of some problems in algorithmic algebraic number theory. PhD thesis, Universität des Saarlandes, Saarbrücken, Germany (1995)

    Google Scholar 

  15. de Weger, B.M.M.: Algorithms for Diophantine Equations. PhD thesis, University of Leiden (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dept. Computer Science, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol, BS8 1UB, United Kingdom

    N. P. Smart

  2. COSIC - Electrical Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, B-3001, Heverlee, Belgium

    F. Vercauteren

Authors
  1. N. P. Smart
  2. F. Vercauteren

Editor information

Editors and Affiliations

  1. Département d’Informatique, École Normale Supérieure, 45 rue d’Ulm, 75230, Paris Cedex 05, France

    Phong Q. Nguyen  & David Pointcheval  & 

Rights and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smart, N.P., Vercauteren, F. (2010). Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes. In: Nguyen, P.Q., Pointcheval, D. (eds) Public Key Cryptography – PKC 2010. PKC 2010. Lecture Notes in Computer Science, vol 6056. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13013-7_25

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp