Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Statistical Learning for Inductive Query Answering on OWL Ontologies

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNISA,volume 5318))

Included in the following conference series:

  • 2101Accesses

  • 30Citations

Abstract

A novel family of parametric language-independent kernel functions defined for individuals within ontologies is presented. They are easily integrated with efficient statistical learning methods for inducing linear classifiers that offer an alternative way to perform classification w.r.t. deductive reasoning. A method for adapting the parameters of the kernel to the knowledge base through stochastic optimization is also proposed. This enables the exploitation of statistical learning in a variety of tasks where an inductive approach may bridge the gaps of the standard methods due the inherent incompleteness of the knowledge bases. In this work, a system integrating the kernels has been tested in experiments on approximate query answering with real ontologies collected from standard repositories.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  2. Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology Learning from Text: Methods, Evaluation and Applications. IOS Press, Amsterdam (2005)

    Google Scholar 

  3. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  4. Hitzler, P., Vrandec̆ić, D.: Resolution-based approximate reasoning for OWL DL. In: Gil, Y., Motta, E., Benjamins, V., Musen, M.A. (eds.) Proceedings of the 4th International Semantic Web Conference, ISWC 2005, Galway, Ireland. LNCS, vol. 3279, pp. 383–397. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the Semantic Web. Applied Intelligence 26, 139–159 (2007)

    Article  Google Scholar 

  6. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Gärtner, T., Lloyd, J., Flach, P.: Kernels and distances for structured data. Machine Learning 57, 205–232 (2004)

    Article MATH  Google Scholar 

  8. Fanizzi, N., d’Amato, C., Esposito, F.: Randomized metric induction and evolutionary conceptual clustering for semantic knowledge bases. In: Silva, M., Laender, A., Baeza-Yates, R., McGuinness, D., Olsen, O., Olstad, B. (eds.) Proceedings of the ACM International Conference on Knowledge Management, CIKM 2007, Lisbon, Portugal, pp. 51–60. ACM, New York (2007)

    Google Scholar 

  9. d’Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology population: An inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 230–235 (2007)

    Google Scholar 

  11. Schölkopf, B., Smola, A.: Learning with Kernels. The MIT Press, Cambridge (2002)

    MATH  Google Scholar 

  12. Fanizzi, N., d’Amato, C.: A declarative kernel for\(\mathcal{ALC}\) concept descriptions. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 322–331. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Fanizzi, N., d’Amato, C.: Inductive concept retrieval and query answering with semantic knowledge bases through kernel methods. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) KES 2007, Part I. LNCS (LNAI), vol. 4692, pp. 148–155. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Ehrig, M., Haase, P., Hefke, M., Stojanovic, N.: Similarity for ontologies - a comprehensive framework. In: Proceedings of the 13th European Conference on Information Systems, ECIS 2005 (2005)

    Google Scholar 

  16. Hammer, B., Hitzler, P. (eds.): Perspectives of Neural-Symbolic Integration. Studies in Computational Intelligence, vol. 77. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  17. Haussler, D.: Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, Department of Computer Science, University of California – Santa Cruz (1999)

    Google Scholar 

  18. Cumby, C., Roth, D.: On kernel methods for relational learning. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the 20th International Conference on Machine Learning, ICML 2003, pp. 107–114. AAAI Press, Menlo Park (2003)

    Google Scholar 

  19. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search – The Metric Space Approach. In: Advances in database Systems. Springer, Heidelberg (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dipartimento di Informatica, Università degli Studi di Bari, Campus Universitario, Via Orabona 4, 70125, Bari, Italy

    Nicola Fanizzi, Claudia d’Amato & Floriana Esposito

Authors
  1. Nicola Fanizzi
  2. Claudia d’Amato
  3. Floriana Esposito

Editor information

Editors and Affiliations

  1. Department of Computer Science and Engineering, Wright State University, Colonel Glenn Way 3640, 454350001, Dayton, USA

    Amit Sheth

  2. Institut für Informatik, Universität Koblenz-Landau, Universitätsstr. 1, 56016, Koblenz, Germany

    Steffen Staab

  3. BBN Technologies, 48103, Ann Arbor, USA

    Mike Dean

  4. DoCoMo Communications Laboratories Europe GmbH, 80687, Munich, Germany

    Massimo Paolucci

  5. Department of Computer Science, University of Sheffield, Regent Court, 211 Portobello Street, S1 4DP, Sheffield, UK

    Diana Maynard

  6. CSEE Department, UMBC, 1000 Hilltop Circle, MD 21250, Baltimore, USA

    Timothy Finin

  7. Department of Computer Science and Engineering, Wright State University, 3640 Colonel Glenn Highway, OH 45435, Dayton, USA

    Krishnaprasad Thirunarayan

Rights and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fanizzi, N., d’Amato, C., Esposito, F. (2008). Statistical Learning for Inductive Query Answering on OWL Ontologies. In: Sheth, A.,et al. The Semantic Web - ISWC 2008. ISWC 2008. Lecture Notes in Computer Science, vol 5318. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88564-1_13

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp