Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

DL-FOIL Concept Learning in Description Logics

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 5194))

Included in the following conference series:

  • 1603Accesses

  • 105Citations

Abstract

In this paper we focus on learning concept descriptions expressed in Description Logics. After stating the learning problem in this context, a FOIL-like algorithm is presented that can be applied to general DL languages, discussing related theoretical aspects of learning with the inherent incompleteness underlying the semantics of this representation. Subsequently we present an experimental evaluation of the implementation of this algorithm performed on some real ontologies in order to empirically assess its performance.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic knowledge bases using formal concept analysis. In: Veloso, M. (ed.) Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, pp. 230–235 (2007)

    Google Scholar 

  3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American 284(5), 34–43 (2001)

    Article  Google Scholar 

  4. Borgida, A.: On the relative expressiveness of description logics and predicate logics. Artificial Intelligence 82(1–2), 353–367 (1996)

    Article MathSciNet  Google Scholar 

  5. Brandt, S., Küsters, R., Turhan, A.-Y.: Approximation and difference in description logics. In: Fensel, D., Giunchiglia, F., McGuinness, D., Williams, M.-A. (eds.) Proceedings of the International Conference on Knowledge Representation, pp. 203–214. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  6. Cohen, W.W., Hirsh, H.: Learnability of description logics. In: Proceedings of the Fourth Annual Workshop on Computational Learning Theory, Pittsburgh, PA. ACM Press, New York (1992)

    Google Scholar 

  7. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic. In: Torasso, P., Doyle, J., Sandewall, E. (eds.) Proceedings of the 4th International Conference on the Principles of Knowledge Representation and Reasoning, pp. 121–133. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  8. d’Amato, C., Fanizzi, N., Esposito, F.: Query answering and ontology population: An inductive approach. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 288–302. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Dean, M., Schreiber, G.: Web Ontology Language Reference. W3C recommendation, W3C (2004),http://www.w3.org/TR/owl-ref

  10. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-intensive induction of terminologies from metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)

    Google Scholar 

  11. Goldman, S.A., Kwek, S., Scott, S.D.: Learning from examples with unspecified attribute values. Information and Computation 180(2), 82–100 (2003)

    Article MATH MathSciNet  Google Scholar 

  12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic programs with description logic. In: Proceedings of the 12th international conference on World Wide Web, WWW 2003, pp. 48–57. ACM Press, New York (2003)

    Chapter  Google Scholar 

  13. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)

    Article  Google Scholar 

  14. Inuzuka, N., Kamo, M., Ishii, N., Seki, H., Itoh, H.: Tow-down induction of logic programs from incomplete samples. In: Muggleton, S. (ed.) ILP 1996. LNCS, vol. 1314, pp. 265–282. Springer, Heidelberg (1997)

    Google Scholar 

  15. Kietz, J.-U.: Learnability of description logic programs. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, pp. 117–132. Springer, Heidelberg (2003)

    Google Scholar 

  16. Kietz, J.-U., Morik, K.: A polynomial approach to the constructive induction of structural knowledge. Machine Learning 14(2), 193–218 (1994)

    Article MATH  Google Scholar 

  17. Lehmann, J., Hitzler, P.: Foundations of refinement operators for description logics. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Lehmann, J., Hitzler, P.: A refinement operator based learning algorithm for the\({\cal ALC}\) description logic. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Lisi, F.A.: Principles of inductive reasoning on the Semantic Web: A framework for learning in\(\mathcal{AL}\)-Log. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 118–132. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Quinlan, R.: Learning logical definitions from relations. Machine Learning 5, 239–266 (1990)

    Google Scholar 

  21. Rouveirol, C., Ventos, V.: Towards learning in CARIN-\(\mathcal{ALN}\). In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 191–208. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. LACAM – Dipartimento di Informatica, Università degli studi di Bari, Via Orabona, 4, 70125, Bari, Italy

    Nicola Fanizzi, Claudia d’Amato & Floriana Esposito

Authors
  1. Nicola Fanizzi
  2. Claudia d’Amato
  3. Floriana Esposito

Editor information

Filip Železný Nada Lavrač

Rights and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fanizzi, N., d’Amato, C., Esposito, F. (2008). DL-FOIL Concept Learning in Description Logics. In: Železný, F., Lavrač, N. (eds) Inductive Logic Programming. ILP 2008. Lecture Notes in Computer Science(), vol 5194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85928-4_12

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp