Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Multilabel Classification

  • Chapter
  • First Online:

Abstract

This book is concerned with the classification of multilabeled data and other tasks related to that subject. The goal of this chapter is to formally introduce the problem, as well as to give a broad overview of its main application fields and how it have been tackled by experts. A general introduction to the matter is provided in Sect. 2.1, followed by a formal definition of the multilabel classification problem in Sect. 2.2. Some of the main application fields of multilabel classification are portrayed in Sect. 2.3. Lastly, the approaches followed to face this duty are introduced in Sect. 2.4.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Notes

  1. 1.

    In general, we will refer to binary and multiclass classification, which are the most well-known classification kinds, astraditional classification.

  2. 2.

    ARFF is the file format used by WEKA [37].

  3. 3.

References

  1. Alcala-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: KEEL multi-label dataset repository.http://sci2s.ugr.es/keel/multilabel.php

  2. Alcala-Fdez, J., Fernández, A., Luengo, J., Derrac, J., García, S., Sánchez, L., Herrera, F.: KEEL data-mining software tool: data set repository and integration of algorithms and experimental analysis framework. J. Mult-valued Log. Soft Comput.17(2–3), 255–287 (2011)

    Google Scholar 

  3. Alvares-Cherman, E., Metz, J., Monard, M.C.: Incorporating label dependency into the binary relevance framework for multi-label classification. Expert Syst. Appl.39(2), 1647–1655 (2012)

    Article  Google Scholar 

  4. Aly, M.: Survey on multiclass classification methods. In: Technical Report, pp. 1–9. California Institute of Technology (2005)

    Google Scholar 

  5. Boutell, M., Luo, J., Shen, X., Brown, C.: Learning multi-label scene classification. Pattern Recogn.37(9), 1757–1771 (2004)

    Article  Google Scholar 

  6. Breiman, L.: Bagging predictors. Mach. Learn.24(2), 123–140 (1996)

    MathSciNet MATH  Google Scholar 

  7. Briggs, F., Lakshminarayanan, B., Neal, L., Fern, X.Z., Raich, R., Hadley, S.J.K., Hadley, A.S., Betts, M.G.: Acoustic classification of multiple simultaneous bird species: a multi-instance multi-label approach. J. Acoust. Soc. Am.131(6), 4640–4650 (2012)

    Article  Google Scholar 

  8. Brinker, K., Hüllermeier, E.: Case-based multilabel ranking. In: Proceedings of 20th International Joint Conference on Artificial Intelligence, IJCAI’07, pp. 702–707. Morgan Kaufmann (2007)

    Google Scholar 

  9. Burges, C.J.C.: A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Disc.2(2), 121–167 (1998)

    Article  Google Scholar 

  10. Charte, F., Charte, D.: Working with multilabel datasets in R: the mldr package. R J.7(2), 149–162 (2015)

    Google Scholar 

  11. Charte, F., Charte, D., Rivera, A.J., del Jesus, M.J., Herrera, F.: R Ultimate multilabel dataset repository. In: Proceedings of 11th International Conference on Hybrid Artificial Intelligent Systems, HAIS’16, vol. 9648, pp. 487–499. Springer (2016)

    Google Scholar 

  12. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Multilabel classification. In: Problem Analysis, Metrics and Techniques Book Repository.https://github.com/fcharte/SM-MLC

  13. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: Addressing imbalance in multilabel classification: measures and random resampling algorithms. Neurocomputing163, 3–16 (2015)

    Article  Google Scholar 

  14. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: MLSMOTE: approaching imbalanced multilabel learning through synthetic instance generation. Knowl.-Based Syst.89, 385–397 (2015)

    Article  Google Scholar 

  15. Charte, F., Rivera, A.J., del Jesus, M.J., Herrera, F.: QUINTA: a question tagging assistant to improve the answering ratio in electronic forums. In: Proceedings of IEEE International Conference on Computer as a Tool, EUROCON’15, pp. 1–6. IEEE (2015)

    Google Scholar 

  16. Chen, K., Lu, B., Kwok, J.: Efficient classification of multi-label and imbalanced data using min-max modular classifiers. In: Proceedings of IEEE International Joint Conference on Neural Networks, IJCNN’06, pp. 1770–1775 (2006)

    Google Scholar 

  17. Chen, X., Zhan, Y., Ke, J., Chen, X.: Complex video event detection via pairwise fusion of trajectory and multi-label hypergraphs. Multimedia Tools Appl. 1–22 (2015)

    Google Scholar 

  18. Cherkassky, V., Mulier, F.: Learning from Data: Concepts. Theory and Methods. Wiley-IEEE Press (2007)

    Google Scholar 

  19. Cong, H., Tong, L.H.: Grouping of triz inventive principles to facilitate automatic patent classification. Expert Syst. Appl.34(1), 788–795 (2008)

    Article  Google Scholar 

  20. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory13(1), 21–27 (1967)

    Article MATH  Google Scholar 

  21. Crammer, K., Dredze, M., Ganchev, K., Talukdar, P.P., Carroll, S.: Automatic code assignment to medical text. In: Proceedings of Workshop on Biological, Translational, and Clinical Language Processing, BioNLP’07, pp. 129–136. Association for Computational Linguistics (2007)

    Google Scholar 

  22. Dembszynski, K., Waegeman, W., Cheng, W., Hüllermeier, E.: On label dependence in multilabel classification. In: ICML Workshop on Learning from Multi-label data, pp. 5–12 (2010)

    Google Scholar 

  23. Dendamrongvit, S., Kubat, M.: Undersampling approach for imbalanced training sets and induction from multi-label text-categorization domains. In: New Frontiers in Applied Data Mining,LNCS, vol. 5669, pp. 40–52. Springer (2010)

    Google Scholar 

  24. Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems.LNCS, vol. 1857, pp. 1–15. Springer (2000)

    Google Scholar 

  25. Diplaris, S., Tsoumakas, G., Mitkas, P., Vlahavas, I.: Protein classification with multiple algorithms. In: Proc. 10th Panhellenic Conference on Informatics, PCI’05, vol. 3746, pp. 448–456. Springer (2005)

    Google Scholar 

  26. Duda, R., Hart, P., Stork, D.: Pattern Classification, 2nd edn. John Wiley (2000)

    Google Scholar 

  27. Dumais, S., Furnas, G., Landauer, T., Deerwester, S., Deerwester, S., et al.: Latent semantic indexing. In: Proceedings of 4th Text Retrieval Conference, TREC-4, pp. 105–115. NIST (1995)

    Google Scholar 

  28. Duygulu, P., Barnard, K., de Freitas, J., Forsyth, D.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: Proceedings of 7th European Conference on Computer Vision, ECCV’02, vol. 2353, pp. 97–112. Springer (2002)

    Google Scholar 

  29. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Advances in Neural Information Processing Systems, vol. 14, pp. 681–687. MIT Press (2001)

    Google Scholar 

  30. Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn.73, 133–153 (2008)

    Google Scholar 

  31. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn.44(8), 1761–1776 (2011)

    Article  Google Scholar 

  32. Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: A review on ensembles for the class imbalance problem: bagging, boosting, and hybrid-based approaches. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.42(4), 463–484 (2012)

    Article  Google Scholar 

  33. Ghamrawi, N., McCallum, A.: Collective multi-label classification. In: Proceedings of 14th ACM International Conference on Information and Knowledge Management, CIKM’05, pp. 195–200. ACM (2005)

    Google Scholar 

  34. Gibaja, E., Ventura, S.: A tutorial on multi-label learning. ACM Comput. Surv.47(3) (2015)

    Google Scholar 

  35. Gonçalves, T., Quaresma, P.: A preliminary approach to the multilabel classification problem of Portuguese juridical documents. In: Proceedings of 11th Portuguese Conference on Artificial Intelligence, EPIA’03, pp. 435–444. Springer (2003)

    Google Scholar 

  36. Guo, Y., Gu, S.: Multi-label classification using conditional dependency networks. In: Proceedings of 22th International Joint Conference on Artificial Intelligence,IJCAI’11, vol. 2, pp. 1300–1305 (2011)

    Google Scholar 

  37. Holmes, G., Donkin, A., Witten, I.H.: WEKA: a machine learning workbench. In: Proceedings of 2nd Australian and New Zealand Conference on Intelligent Information Systems, ANZIIS’02, pp. 357–361 (2002)

    Google Scholar 

  38. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise preferences. Artif. Intell.172(16), 1897–1916 (2008)

    Article MathSciNet MATH  Google Scholar 

  39. Jolliffe, I.: Introduction. In: Principal Component Analysis, pp. 1–7. Springer (1986)

    Google Scholar 

  40. Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel text classification for automated tag suggestion. In: Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, ECML PKDD’08, pp. 75–83 (2008)

    Google Scholar 

  41. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Proc eedings of 15th European Conference on Machine Learning, ECML’04, pp. 217–226. Springer (2004)

    Google Scholar 

  42. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: a new benchmark collection for text categorization research. J. Mach. Learn. Res.5, 361–397 (2004)

    Google Scholar 

  43. Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: Proc eedings of 8th IEEE International Conference on Data Mining, ICDM’08, pp. 995–1000. IEEE (2008)

    Google Scholar 

  44. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label classification. Mach. Learn.85, 333–359 (2011)

    Article MathSciNet  Google Scholar 

  45. Read, J., Reutemann, P.: MEKA multi-label dataset repository.http://sourceforge.net/projects/meka/files/Datasets/

  46. Rokach, L.: Pattern classification using ensemble methods. World Scientific (2009)

    Google Scholar 

  47. Salton, G., Fox, E.A., Wu, H.: Extended Boolean information retrieval. Commun. ACM26(11), 1022–1036 (1983)

    Article MathSciNet MATH  Google Scholar 

  48. Snoek, C.G.M., Worring, M., van Gemert, J.C., Geusebroek, J.M., Smeulders, A.W.M.: The challenge problem for automated detection of 101 semantic concepts in multimedia. In: Proceedings of 14th ACM International Conference on Multimedia, MULTIMEDIA’06, pp. 421–430 (2006)

    Google Scholar 

  49. Sobol-Shikler, T., Robinson, P.: Classification of complex information: Inference of co-occurring affective states from their expressions in speech. IEEE Trans. Pattern Anal. Mach. Intell.32(7), 1284–1297 (2010)

    Article  Google Scholar 

  50. Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., Demirbas, M.: Short text classification in twitter to improve information filtering. In: Proceedings of 33rd international ACM SIGIR conference on Research and development in information retrieval, pp. 841–842. ACM (2010)

    Google Scholar 

  51. Sun, L., Ji, S., Ye, J.: Multi-label dimensionality reduction. CRC Press (2013)

    Google Scholar 

  52. Tenenboim-Chekina, L., Rokach, L., Shapira, B.: Identification of label dependences for multi-label classification. In: Proceedings of 2nd International Workshop on Learning from Multi-Label Data, MLD’10, pp. 53–60 (2010)

    Google Scholar 

  53. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer (2010)

    Google Scholar 

  54. Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.: MULAN multi-label dataset repository.http://mulan.sourceforge.net/datasets.html

  55. Tsoumakas, G., Xioufis, E.S., Vilcek, J., Vlahavas, I.: MULAN: a java library for multi-label learning. J. Mach. Learn. Res.12, 2411–2414 (2011)

    MathSciNet MATH  Google Scholar 

  56. Turnbull, D., Barrington, L., Torres, D., Lanckriet, G.: Semantic annotation and retrieval of music and sound effects. IEEE Trans. Audio Speech Lang. Process.16(2), 467–476 (2008)

    Article  Google Scholar 

  57. Vembu, S., Gärtner, T.: Label ranking algorithms: a survey. In: Preference learning, pp. 45–64. Springer (2011)

    Google Scholar 

  58. Wieczorkowska, A., Synak, P., Raś, Z.: Multi-label classification of emotions in music. In: Intelligent Information Processing and Web Mining. AISC, vol. 35, Chap. 30, pp. 307–315 (2006)

    Google Scholar 

  59. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput.1(1), 67–82 (1997)

    Article  Google Scholar 

  60. Zhang, M., Zhang, K.: Multi-label learning by exploiting label dependency. In: Proceedings of 16th International Conference on Knowledge Discovery and Data Mining, ACM SIGKDD’10, pp. 999–1008 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. University of Granada, Granada, Spain

    Francisco Herrera & Francisco Charte

  2. University of Jaén, Jaén, Spain

    Antonio J. Rivera & María J. del Jesus

Authors
  1. Francisco Herrera
  2. Francisco Charte
  3. Antonio J. Rivera
  4. María J. del Jesus

Corresponding author

Correspondence toFrancisco Herrera.

Rights and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Herrera, F., Charte, F., Rivera, A.J., del Jesus, M.J. (2016). Multilabel Classification. In: Multilabel Classification . Springer, Cham. https://doi.org/10.1007/978-3-319-41111-8_2

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp