Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 12263))
Included in the following conference series:
8491Accesses
33Citations
Abstract
Image registration is an ill-posed inverse problem which often requires regularisation on the solution space. In contrast to most of the current approaches which impose explicit regularisation terms such as smoothness, in this paper we propose a novel method that can implicitly learn biomechanics-informed regularisation. Such an approach can incorporate application-specific prior knowledge into deep learning based registration. Particularly, the proposed biomechanics-informed regularisation leverages a variational autoencoder (VAE) to learn a manifold for biomechanically plausible deformations and to implicitly capture their underlying properties via reconstructing biomechanical simulations. The learnt VAE regulariser then can be coupled with any deep learning based registration network to regularise the solution space to be biomechanically plausible. The proposed method is validated in the context of myocardial motion tracking on 2D stacks of cardiac MRI data from two different datasets. The results show that it can achieve better performance against other competing methods in terms of motion tracking accuracy and has the ability to learn biomechanical properties such as incompressibility and strains. The method has also been shown to have better generalisability to unseen domains compared with commonly used L2 regularisation schemes.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 11439
- Price includes VAT (Japan)
- Softcover Book
- JPY 14299
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ashburner, J.: A fast diffeomorphic image registration algorithm. NeuroImage38(1), 95–113 (2007)
Bai, W., et al.: Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J. Cardiovasc. Magn. Reson.20(1), 65 (2018)
Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging38(8), 1788–1800 (2019)
Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis.61(2), 139–157 (2005)
Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging37(11), 2514–2525 (2018)
Bhalodia, R., Elhabian, S.Y., Kavan, L., Whitaker, R.T.: A cooperative autoencoder for population-based regularization of CNN image registration. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 391–400. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-32245-8_44
Bône, A., Louis, M., Colliot, O., Durrleman, S.: Learning low-dimensional representations of shape data sets with diffeomorphic autoencoders. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 195–207. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-20351-1_15
Cao, J.J., Ngai, N., Duncanson, L., Cheng, J., Gliganic, K., Chen, Q.: A comparison of both dense and feature tracking techniques with tagging for the cardiovascular magnetic resonance assessment of myocardial strain. J. Cardiovasc. Magn. Reson.20(1), 26 (2018)
Elen, A., et al.: Three-dimensional cardiac strain estimation using spatio-temporal elastic registration of ultrasound images: a feasibility study. IEEE Trans. Med. Imaging27(11), 1580–1591 (2008)
Fan, J., Cao, X., Xue, Z., Yap, P.-T., Shen, D.: Adversarial similarity network for evaluating image alignment in deep learning based registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 739–746. Springer, Cham (2018).https://doi.org/10.1007/978-3-030-00928-1_83
Ferdian, E., et al.: Fully automated myocardial strain estimation from cardiovascular MRI-tagged images using a deep learning framework in the UK Biobank. Radiol.: Cardiothorac. Imaging2(1), e190032 (2020)
Fidon, L., Ebner, M., Garcia-Peraza-Herrera, L.C., Modat, M., Ourselin, S., Vercauteren, T.: Incompressible image registration using divergence-conforming B-splines. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 438–446. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-32245-8_49
Hu, Y., et al.: Adversarial deformation regularization for training image registration neural networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 774–782. Springer, Cham (2018).https://doi.org/10.1007/978-3-030-00928-1_87
Hunter, P.J., Smaill, B.H.: The analysis of cardiac function: a continuum approach. Prog. Biophys. Mol. Biol.52(2), 101–164 (1988)
Khallaghi, S., et al.: Statistical biomechanical surface registration: application to MR-TRUS fusion for prostate interventions. IEEE Trans. Med. Imaging34(12), 2535–2549 (2015)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: International Conference on Learning Representations (2014)
Krebs, J., Delingette, H., Mailhé, B., Ayache, N., Mansi, T.: Learning a probabilistic model for diffeomorphic registration. IEEE Trans. Med. Imaging38(9), 2165–2176 (2019)
Mansi, T., Pennec, X., Sermesant, M., Delingette, H., Ayache, N.: iLogDemons: a demons-based registration algorithm for tracking incompressible elastic biological tissues. Int. J. Comput. Vision92(1), 92–111 (2011)
Petersen, S.E., et al.: Reference ranges for cardiac structure and function using cardiovascular magnetic resonance (CMR) in Caucasians from the UK Biobank population cohort. J. Cardiovasc. Magn. Reson.19(1), 18 (2017)
Qin, C., et al.: Joint learning of motion estimation and segmentation for cardiac MR image sequences. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 472–480. Springer, Cham (2018).https://doi.org/10.1007/978-3-030-00934-2_53
Qin, C., et al.: Joint motion estimation and segmentation from undersampled cardiac MR image. In: Knoll, F., Maier, A., Rueckert, D. (eds.) MLMIR 2018. LNCS, vol. 11074, pp. 55–63. Springer, Cham (2018).https://doi.org/10.1007/978-3-030-00129-2_7
Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised deformable registration for multi-modal images via disentangled representations. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 249–261. Springer, Cham (2019).https://doi.org/10.1007/978-3-030-20351-1_19
Rohlfing, T., Maurer, C.R.: Intensity-based non-rigid registration using adaptive multilevel free-form deformation with an incompressibility constraint. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 111–119. Springer, Heidelberg (2001).https://doi.org/10.1007/3-540-45468-3_14
Rueckert, D., Frangi, A.F., Schnabel, J.A.: Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imaging22(8), 1014–1025 (2003)
Rueckert, D., Sonoda, L.I., Hayes, C., et al.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging18(8), 712–721 (1999)
Shi, W., et al.: A comprehensive cardiac motion estimation framework using both untagged and 3-D tagged MR images based on nonrigid registration. IEEE Trans. Med. Imaging31(6), 1263–1275 (2012)
Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging32(7), 1153–1190 (2013)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007. LNCS, vol. 4792, pp. 319–326. Springer, Heidelberg (2007).https://doi.org/10.1007/978-3-540-75759-7_39
Zhu, Y., Luo, X., Gao, H., McComb, C., Berry, C.: A numerical study of a heart phantom model. Int. J. Comput. Math.91(7), 1535–1551 (2014)
Acknowledgement
This work was supported by EPSRC programme grant SmartHeart (EP/P001009/1). This research has been conducted mainly using the UK Biobank Resource under Application Number 40119. The authors wish to thank all UK Biobank participants and staff.
Author information
Authors and Affiliations
Department of Computing, Imperial College London, London, UK
Chen Qin, Chen Chen, Huaqi Qiu & Daniel Rueckert
Institute for Digital Communications, School of Engineering, University of Edinburgh, Edinburgh, UK
Chen Qin
Data Science Institute, Imperial College London, London, UK
Shuo Wang & Wenjia Bai
Department of Brain Sciences, Imperial College London, London, UK
Wenjia Bai
- Chen Qin
Search author on:PubMed Google Scholar
- Shuo Wang
Search author on:PubMed Google Scholar
- Chen Chen
Search author on:PubMed Google Scholar
- Huaqi Qiu
Search author on:PubMed Google Scholar
- Wenjia Bai
Search author on:PubMed Google Scholar
- Daniel Rueckert
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toChen Qin.
Editor information
Editors and Affiliations
University of Toronto, Toronto, ON, Canada
Anne L. Martel
The University of British Columbia, Vancouver, BC, Canada
Purang Abolmaesumi
University College London, London, UK
Danail Stoyanov
École Centrale de Nantes, Nantes, France
Diana Mateus
EURECOM, Biot, France
Maria A. Zuluaga
Chinese Academy of Sciences, Beijing, China
S. Kevin Zhou
Sorbonne University, Paris, France
Daniel Racoceanu
The Hebrew University of Jerusalem, Jerusalem, Israel
Leo Joskowicz
1Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Qin, C., Wang, S., Chen, C., Qiu, H., Bai, W., Rueckert, D. (2020). Biomechanics-Informed Neural Networks for Myocardial Motion Tracking in MRI. In: Martel, A.L.,et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12263. Springer, Cham. https://doi.org/10.1007/978-3-030-59716-0_29
Download citation
Published:
Publisher Name:Springer, Cham
Print ISBN:978-3-030-59715-3
Online ISBN:978-3-030-59716-0
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative