Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Photovoltaic and photoconductive infrared detectors

  • Chapter
  • First Online:

Part of the book series:Topics in Applied Physics ((TAP,volume 19))

  • 744Accesses

  • 18Citations

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. H. Seib, L. W. Aukerman:Advances in Electronics and Electron Physics34, ed. by L. Marton (Academic Press, New York 1973) pp. 95–221

    Google Scholar 

  2. J.O. Dimmock: J. Electron. Mater.1, 255 (1972); see also

    Google Scholar 

  3. R. B. Emmons, S. R. Hawkins, K. F. Cuff: Optical Engineering14, 21 (1975)

    Google Scholar 

  4. H. Levinstein, J. Mudar: Proc. IEEE63, 6 (1975)

    Google Scholar 

  5. T. C. Harman, I. Melngailis:Applied Solid State Science4, ed. by R. Wolfe (Academic Press, New York 1974) pp. 1–94; see also

    Google Scholar 

  6. I. Melngailis: J. Luminescence7, 501 (1973)

    Google Scholar 

  7. G. R. Pruett, R. L. Petritz: Proc. IRE47, 1524 (1959)

    Google Scholar 

  8. W.J. Beyen, B.R. Pagel: Infrared Phys.6, 161 (1966)

    Google Scholar 

  9. D. Long: Infrared Phys.12, 115 (1972)

    Google Scholar 

  10. I. Melngailis, T. C. Harman:Semiconductors and Semimetals5, ed. by R. K. Willardson and A. C. Beer (Academic Press, New York 1970) pp. 111–174

    Google Scholar 

  11. C.T. Sah, R. Noyce, W. Shockley: Proc. IRE45, 1228 (1957)

    Google Scholar 

  12. See J. R. Hauser, P. M. Dunbar: Solid-State Electron.18, 715 (1975), and references therein. We assume an idealized extreme case of their results in which diffusion current in thep+ region and space-charge layer gr current of thep+-p interface are negligible. One reason for introducing this boundary condition is to emphasize that theΔn=0 boundary condition need not always apply

    Google Scholar 

  13. See, for example, S. M. Sze:Physics of Semiconductor Devices (Wiley-Interscience, New York 1969)

    Google Scholar 

  14. P. W. Kruse, L. D. McGlauchlin, R. B. McQuistan:Elements of Infrared Technology: Generation, Transmission, and Detection (Wiley-Interscience, New York 1962)

    Google Scholar 

  15. W. H. Rolls, D. V. Eddolls: Infrared Phys.13, 143 (1973)

    Google Scholar 

  16. C. C. Wang, S. R. Hampton: Solid-State Electron.18, 121 (1975)

    Google Scholar 

  17. A. M. Andrews, J. T. Longo, J. E. Clarke, E. R. Gertner: Appl. Phys. Lett.26, 439 (1975)

    Google Scholar 

  18. L. H. DeVaux, H. Kimura, M. J. Sheets, F. J. Renda, J. R. Balon, P. S. Chia, A. H. Lockwood Infrared Phys.15, 271 (1975)

    Google Scholar 

  19. P. S. Chia, J. R. Balon, A. H. Lockwood, D. M. Randall, F. J. Renda, L. H. DeVaux, H. Kimura Infrared Phys.15, 279 (1975)

    Google Scholar 

  20. P.LoVecchio, M.Jasper, J.T. Cox, M.B. Garber: Infrared Phys.15, 295 (1975)

    Google Scholar 

  21. A. Bradford, E. Wentworth: Infrared Phys.15, 303 (1975)

    Google Scholar 

  22. R. Longshore, M. Jasper, B. Summer, P. LoVecchio: Infrared Phys.15, 311 (1975)

    Google Scholar 

  23. M.R. Johnson, R.A. Chapman, J.S. Wrobel: Infrared Phys.15, 317 (1975); see also paper on Pb1−xGexTe by

    Google Scholar 

  24. G. A. Antcliffe, R. A. Chapman: Appl. Phys. Lett.26, 576 (1975)

    Google Scholar 

  25. M. A. Kinch, M.J. Brau, A. Simmons: J. Appl. Phys.44, 1649 (1973)

    Google Scholar 

  26. M. A. Kinch, S. R. Borrello: Infrared Phys.15, 111 (1975)

    Google Scholar 

  27. G. Fiorito, G. Gasparrini, F. Svelto: Appl. Phys. Lett.23, 448 (1973)

    Google Scholar 

  28. J. Marine, C. Motte: Appl. Phys. Lett.23, 450 (1973)

    Google Scholar 

  29. T. Koehler, P. J. McNally: Optical Engineering13, 312 (1974)

    Google Scholar 

  30. G. Fiorito, G. Gasparrini, F. Svelto: Infrared Phys.15, 287 (1975)

    Google Scholar 

  31. J.M. Pawlikowski, P. Becla: Infrared Phys.15, 331 (1975)

    Google Scholar 

  32. P. Becla, J.M. Pawlikowski: Infrared Phys.16, 457 (1976)

    Google Scholar 

  33. G. Cohen-Solal, A. Zozime, C. Motte, Y. Riant: Infrared Phys.16, 555 (1976)

    Google Scholar 

  34. H. Y. Fan: Phys. Rev.92, 1424 (1953)

    Google Scholar 

  35. K. M. van Vliet: Proc. IRE46, 1004 (1958)

    Google Scholar 

  36. K. M. van Vliet: Appl. Opt.6, 1145 (1967)

    Google Scholar 

  37. R.L. Williams: Infrared Phys.8, 337 (1968)

    Google Scholar 

  38. P. W. Kruse:Semiconductors and Semimetals5, ed. by R. K. Willardson and A. C. Beer (Academic Press, New York 1970) pp. 15–83

    Google Scholar 

  39. E. L. Stelzer, D. Long: (unpublished results)

    Google Scholar 

  40. V. J. Mazurczyk, R. N. Graney, J. B. McCullough: Optical Engineering13, 307 (1974)

    Google Scholar 

  41. R. L. Williams, B. H. Breazeale, C. G. Roberts: Proc. Third InternationalConf. on Photoconductivity (Pergamon Press, New York 1971) pp. 237–242

    Google Scholar 

  42. M.R. Johnson: J. Appl. Phys.43, 3090 (1972)

    Google Scholar 

  43. S. P. Emmons, K. L. Ashley: Appl. Phys. Lett.20, 162 (1972)

    Google Scholar 

  44. M.Y. Pines, R.H.Genoud, P.R. Bratt: Proc. IEEE Electron Device Conf. 1974, (IEEE, New York:) pp. 456–460

    Google Scholar 

  45. N. C. Aldrich, J. D. Beck: Appl. Opt.11, 2153 (1972)

    Google Scholar 

  46. J. D. Beck, R. M. Broudy: (unpublished results)

    Google Scholar 

  47. M. M. Blouke, E. E. Harp, C. R. Jeffus, R. L. Williams: J. Appl. Phys.43, 188 (1972); see also references therein

    Google Scholar 

  48. M. M. Blouke, R. L. Williams: Appl. Phys. Lett.20, 25 (1972)

    Google Scholar 

  49. R. A. Soreff: J. Appl. Phys.38, 5201 (1967)

    Google Scholar 

  50. R. B. Emmons: Infrared Phys.10, 63 (1970)

    Google Scholar 

  51. D. Long: IEEE Trans. Electron DevicesED-16, 836 (1969)

    Google Scholar 

  52. M. M. Blouke, C. B. Burgett, R. L. Williams: Infrared Phys.13, 61 (1973)

    Google Scholar 

  53. M. Y. Pines, R. Baron: Proc. IEEE International Electron Devices Meeting, Washington, DC (1974) pp. 446–450

    Google Scholar 

  54. N.Sclar: Infrared Phys.16, 435 (1976)

    Google Scholar 

  55. See, for example, J. L. Moll:Physics of Semiconductors (McGraw-Hill, New York 1964) pp. 101–104

    Google Scholar 

  56. D. Long:Energy Bands in Semiconductors (Wiley-Interscience, New York 1968)

    Google Scholar 

  57. P.J. A. Zoutendyk:Proc. Semimetals and Narrow-Gap Semiconductors Conf. (Pergamon, New York 1971) p. 421

    Google Scholar 

  58. J. R. Burke, J. D. Jensen, B. Houston:Proc. Semimetals and Narrow-Gap Semiconductors Conf. (Pergamon, New York 1971) p. 393

    Google Scholar 

  59. R. S. Allgaier, W. W. Scanlon: Phys. Rev.111, 1029 (1958)

    Google Scholar 

  60. W. W. Scanlon:Solid State Physics9, ed: by F. Seitz and D. Turnbull (Academic Press, New York 1959) p. 115

    Google Scholar 

  61. A very recent paper by P. R. Emtage: J. Appl. Phys.47, 2565 (1976), predicts theoretically that Auger recombination is strong also in Pb1 −xSnxTe, but the theory has not yet been confirmed by direct experiment; see (4.40) and (4.41) for inclusion of Auger recombination. The strong Auger recombination would explain the short ≈ 10−8s carrier lifetimes typically observed in Pb1 −xSnxTe crystals [4.3]

    Google Scholar 

  62. D. Long, J. L. Schmit:Semiconductors and Semimetals5, ed. by R. K. Willardson and A. C. Beer (Academic Press, New York 1970) pp. 175–255

    Google Scholar 

  63. M. W. Scott: J. Appl. Phys.40, 4077 (1969)

    Google Scholar 

  64. See T.C. Harman: J. Electron. Mater.1, 230 (1972), for a report of a recent method and for references to methods developed earlier. Crystals for detectors are still grown often by methods closely related to the modified Bridgeman method developed originally by P. W. Kruse and coworkers in the early 1960s at the Honeywell Corporate Research Center; see

    Google Scholar 

  65. P. W. Kruse: Appl. Opt.4, 687 (1965)

    Google Scholar 

  66. C. T. Elliott, I. L. Spain: Solid State Commun.8, 2063 (1970)

    Google Scholar 

  67. W. Scott, R. J. Hager: J. Appl. Phys.42, 803 (1971); see also

    Google Scholar 

  68. T.T.S.Wong: (thesis, MIT, 1974)

    Google Scholar 

  69. C. T. Elliot: J. Phys. D: Appl. Phys.4, 697 (1971)

    Google Scholar 

  70. V. V. Ptashinskii, P. S. Kireev: Soviet Phys.-Semiconductors6, 1398 (1973)

    Google Scholar 

  71. G. A. Antcliffe, R. T. Bate, R. A. Reynolds: Proc. Conf. on Physics of Semimetals and NarrowGap Semiconductors (Pergamon Press, New York 1971) pp. 499–509

    Google Scholar 

  72. R. A. Reynolds, M. J. Brau, H. Kraus, R. T. Bate: Proc. Conf. on Physics of Semimetals and Narrow-Gap Semiconductors (Pergamon Press, New York 1971) pp. 511–521

    Google Scholar 

  73. J. L. Schmit, E. L. Stelzer: (unpublished results)

    Google Scholar 

  74. J. Stankiewicz, W. Giriat, A. Bienenstock: Phys. Rev.B4, 4465 (1971)

    Google Scholar 

  75. W. Scott: J. Appl. Phys.43, 1055 (1972)

    Google Scholar 

  76. W. Scott, E. L. Stelzer, and R. J. Hager: J. Appl. Phys.47, 1408 (1976)

    Google Scholar 

  77. S. P. Emmons, K. L. Ashley: Appl. Phys. Lett.20, 162 (1972)

    Google Scholar 

  78. C. T. Elliott, I. Melngailis, T. C. Harman, A. G. Foyt: J. Phys. Chem. Solids33, 1527 (1972)

    Google Scholar 

  79. J. L. Schmit: J. Appl. Phys.41, 2876 (1970); basic equation given in this paper was subsequently improved by Schmit to give best fit to data; see (4.109)

    Google Scholar 

  80. C. T. Elliott: J. Phys. D: Appl. Phys.4, 697 (1971)

    Google Scholar 

  81. C. Vérié: Festkörper Probleme X.Advances in Solid State Phys. (Pergamon, Braunschweig, W. Germany 1970) pp. 1–19

    Google Scholar 

  82. P.E.Petersen: J. Appl. Phys.41, 3465 (1970)

    Google Scholar 

  83. D. L. Carter, M. A. Kinch, D. D. Buss: Proc. Semiconductors and Semimetals Conf. (Pergamon, New York 1970) p. 273

    Google Scholar 

  84. M.L. Schultz: Infrared Phys.4, 93 (1964)

    Google Scholar 

  85. A. F.Milnes:Deep Impurities in Semiconductors (Wiley-Interscience, New York 1973); see also

    Google Scholar 

  86. J. H. Nevin, H. T. Henderson: J. Appl. Phys.46, 2130 (1975) forTl-doped Si

    Google Scholar 

  87. W. Kohn:Solid State Physics5 (Academic Press, New York 1957) pp. 257–320

    Google Scholar 

  88. T. F. Lee, T. C. McGill: J. Appl. Phys.46, 373 (1975)

    Google Scholar 

  89. N. F. Mott: Contemp. Phys.14, 401 (1973)

    Google Scholar 

  90. T. C. McGill, R. Baron: Phys. Rev. B11, 5208 (1975)

    Google Scholar 

  91. D. Long: Phys. Rev.129, 2464 (1963)

    Google Scholar 

  92. M. Loewenstein, A. Honig: Phys. Rev.144, 781 (1966)

    Google Scholar 

  93. D. Long, J. Myers: Phys. Rev.115, 1119 (1959)

    Google Scholar 

  94. D. Long, C. D. Motchenbacher, J. Myers: J. Appl. Phys.30, 353 (1959)

    Google Scholar 

  95. J. S. Blakemore, C. E. Sarver: Phys. Rev.173, 767 (1968)

    Google Scholar 

  96. R. A. Messenger, J. S. Blakemore: Phys. Rev.B4, 1873 (1971)

    Google Scholar 

Download references

Authors
  1. D. Long

Editor information

Robert J. Keyes

Rights and permissions

Copyright information

© 1980 Springer-Verlag

About this chapter

Cite this chapter

Long, D. (1980). Photovoltaic and photoconductive infrared detectors. In: Keyes, R.J. (eds) Optical and Infrared Detectors. Topics in Applied Physics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3540101764_12

Download citation

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us


[8]ページ先頭

©2009-2026 Movatter.jp