Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Fully Dynamic Secret Sharing Schemes

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNCS,volume 773))

Included in the following conference series:

  • 3372Accesses

Abstract

We consider secret sharing schemes in which the dealer has the feature of being able (after a preprocessing stage) to activate a particular access structure out of a given set and/or to allow the participants to reconstruct different secrets (in different time instants) by sending to all participants the same broadcast message. In this paper we establish a formal setting to study such secret sharing schemes. The security of the schemes presented is unconditional, since they are not based on any computational assumption. We give bounds on the size of the shares held by participants and on the site of the broadcast message in such schemes.

Partially supported by Italian Ministry of University and Research (M.U.R.S.T.) and by National Council for Research (C.N.R.).

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. B. Blakley, G. R. Blakley, A. H. Chan, and J. Massey,Threshold Schemes with Disenrollment, in “Advances in Cryptology-CRYPTO’ 92”, Ed. E. Brickell, “Lecture Notes in Computer Science”, Springer-Verlag.

    Google Scholar 

  2. G. R. Blakley,Safeguarding Cryptographic Keys, Proceedings AFIPS 1979 National Computer Conference, pp.313–317, June 1979.

    Google Scholar 

  3. C. Blundo, A. De Santis, L. Gargano, and U. Vaccaro,On the Information Rate of Secret Sharing Schemes, in “Advances in Cryptology-CRYPTO’ 92”, Ed. E. Brickell, “Lecture Notes in Computer Science”, Springer-Verlag.

    Google Scholar 

  4. C. Blundo, A. De Santis, D. R. Stinson, and U. Vaccaro,Graph Decomposition and Secret Sharing Schemes, in “Advances in Cryptology — Eurocrypt’ 92”, Lecture Notes in Computer Science, Vol. 658, R. Rueppel Ed., Springer-Verlag, pp. 1–24, 1993.

    Chapter  Google Scholar 

  5. E. F. Brickell and D. M. Davenport,On the Classification of Ideal Secret Sharing Schemes, J. Cryptology, Vol. 4, No. 2, pp. 123–134, 1991.

    Article MATH  Google Scholar 

  6. R. M. Capocelli, A. De Santis, L. Gargano, and U. Vaccaro,On the Size of Shares for Secret Sharing Schemes, Journal of Cryptology, Vol. 6, No. 3, pp. 157–169, 1993.

    Article MATH  Google Scholar 

  7. O. Goldreich, S. Micali, and A. Wigderson,How to Play any Mental Game, Proceedings of 19th ACM Symp. on Theory of Computing, pp. 218–229, 1987.

    Google Scholar 

  8. L. Harn, T. Hwang, C. Laih, and J. Lee,Dynamic Threshold Scheme based on the definition of Cross-Product in a N-dimensional Linear Space in “Advances in Cryptology-Eurocrypt’ 89”, Lecture Notes in Computer Science, Vol. 435, J. Brassard Ed., Springer-Verlag, pp. 286–298.

    Google Scholar 

  9. E. D. Karnin, J. W. Greene, and M. E. Hellman,On Secret Sharing Systems, IEEE Trans. on Inform. Theory, Vol. IT-29, no. 1, pp. 35–41, Jan. 1983.

    Article MathSciNet  Google Scholar 

  10. K. Martin,Discrete Structures in the Theory of Secret Sharing, PhD Thesis, University of London, 1991.

    Google Scholar 

  11. K. Martin,Untrustworthy Participants in Perfect Secret Sharing Schemes, Proceedings of the 3rd IMA Conference on Coding and Cryptology, 1992.

    Google Scholar 

  12. A. Shamir,How to Share a Secret, Communications of the ACM, Vol. 22, n. 11, pp. 612–613, Nov. 1979.

    Article MATH MathSciNet  Google Scholar 

  13. G. J. Simmons,An Introduction to Shared Secret and/or Shared Control Schemes and Their Application, Contemporary Cryptology, IEEE Press, pp. 441–497, 1991.

    Google Scholar 

  14. G. J. Simmons,How to (Really) Share a Secret, in “Advances in Cryptology-CRYPTO 88”, Ed. S. Goldwasser, “Lecture Notes in Computer Science”, Springer-Verlag.

    Google Scholar 

  15. G. J. Simmons, W. Jackson, and K. Martin,The Geometry of Shared Secret Schemes, Bulletin of the ICA, Vol. 1, pp. 71–88, 1991.

    MATH MathSciNet  Google Scholar 

  16. D. R. Stinson,An Explication of Secret Sharing Schemes, Design, Codes and Cryptography, Vol. 2, pp. 357–390, 1992.

    Article MATH MathSciNet  Google Scholar 

  17. D. R. Stinson,Decomposition Constructions for Secret Sharing Schemes, Technical Report UNL-CSE-92-020, Department of Computer Science and Engineering, University of Nebraska, September 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dipartimento di Informatica ed Applicationi, Università di Salerno, 84081, Baronissi (SA), Italy

    C. Blundo, A. De Santis & U. Vaccaro

  2. Dipartimento di Science dell’ Informatione, Università di Roma “La Sapienza”, 00198, Roma, Italy

    A. Cresti

Authors
  1. C. Blundo

    You can also search for this author inPubMed Google Scholar

  2. A. Cresti

    You can also search for this author inPubMed Google Scholar

  3. A. De Santis

    You can also search for this author inPubMed Google Scholar

  4. U. Vaccaro

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Computer Science and Engineering Department and Center for Communication and Information Science, University of Nebraska, 68588-01115, Lincoln, NE, USA

    Douglas R. Stinson

Rights and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Blundo, C., Cresti, A., De Santis, A., Vaccaro, U. (1994). Fully Dynamic Secret Sharing Schemes. In: Stinson, D.R. (eds) Advances in Cryptology — CRYPTO’ 93. CRYPTO 1993. Lecture Notes in Computer Science, vol 773. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48329-2_10

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp