Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

A Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Registration

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 4057))

Included in the following conference series:

  • 1827Accesses

Abstract

In this article, we focus on the parameterization of non-rigid geometrical deformations with a small number of flexible degrees of freedom . In previous work, we proposed a general framework calledpolyaffine to parameterize deformations with a small number of rigid or affine components, while guaranteeing the invertibility of global deformations. However, this framework lacks some important properties: the inverse of a polyaffine transformation is not polyaffine in general, and the polyaffine fusion of affine components is not invariant with respect to a change of coordinate system. We present here a novel general framework, calledLog-Euclidean polyaffine, which overcomes these defects. We also detail a simple algorithm, theFast Polyaffine Transform, which allows to compute very efficiently Log-Euclidean polyaffine transformations and their inverses on a regular grid. The results presented here on real 3D locally affine registration suggest that our novel framework provides a general and efficient way of fusing local rigid or affine deformations into a global invertible transformation without introducing artifacts, independently of the way local deformations are first estimated.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A fast and Log-Euclidean polyaffine framework for locally affine registration. Research report RR-5865, INRIA (March 2006)

    Google Scholar 

  2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and Simple Calculus on Tensors in the Log-Euclidean Framework. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 115–122. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Arsigny, V., Pennec, X., Ayache, N.: Polyrigid and polyaffine transformations: a novel geometrical tool to deal with non-rigid deformations - application to the registration of histological slices. Med. Im. Anal. 9(6), 507–523 (2005)

    Article  Google Scholar 

  4. Cheng, S.H., Higham, N.J., Kenney, C.S., Laub, A.J.: Approximating the logarithm of a matrix to specified accuracy. SIAM J. Matrix Anal. Appl. 22(4), 1112–1125 (2001)

    Article MATH MathSciNet  Google Scholar 

  5. Commowick, O., Arsigny, V., Costa, J., Malandain, G., Ayache, N.: An efficient multi-affine framework for the registration of anatomical structures. In: Proceedings of ISBI 2006. IEEE, Los Alamitos (to appear, 2006)

    Google Scholar 

  6. Cuzol, A., Hellier, P., Mémin, E.: A novel parametric method for non-rigid image registration. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 456–467. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26(4), 1179–1193 (2005)

    Article MATH MathSciNet  Google Scholar 

  8. Little, J.A., Hill, D.L.G., Hawkes, D.J.: Deformations incorpotationg rigid structures. CVIU 66(2), 223–232 (1996)

    Google Scholar 

  9. Maintz, J.B.A., Viergever, M.A.: A survey of medical registration. Medical image analysis 2(1), 1–36 (1998)

    Article  Google Scholar 

  10. Narayanan, R., Fessler, J.A., Park, H., Meyer, C.R.: Diffeomorphic nonlinear transformations: A local parametric approach for image registration. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 174–185. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Papademetris, X., Dione, D.P., Dobrucki, L.W., Staib, L.H., Sinusas, A.J.: Articulated Rigid Registration for Serial Lower-Limb Mouse Imaging. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 919–926. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Pitiot, A., Bardinet, E., Thompson, P.M., Malandain, G.: Piecewise affine registration of biological images for volume reconstruction. Med. Im. Anal.(accepted for publication, 2005)

    Google Scholar 

  13. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Medecal Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  14. Sheppard, D.: A two-dimensionnal interpolation function for irregularly spaced data. In: 23rd National Conference of the ACM, pp. 517–524 (1968)

    Google Scholar 

  15. Stefanescu, R., Pennec, X., Ayache, N.: Grid powered nonlinear image registration with locally adaptive regularization. Med. Im. Anal. 8(3), 325–342 (2004)

    Article  Google Scholar 

  16. Tenenbaum, M., Pollard, H.: Ordinary Differential Equations. Dover (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. 2004 Route des Lucioles, INRIA Sophia – Epidaure Project, BP 93, 06902 Cedex, Sophia Antipolis, France

    Vincent Arsigny, Olivier Commowick, Xavier Pennec & Nicholas Ayache

  2. DOSISoft S.A., 45 Avenue Carnot, 94 230, Cachan, France

    Olivier Commowick

Authors
  1. Vincent Arsigny

    You can also search for this author inPubMed Google Scholar

  2. Olivier Commowick

    You can also search for this author inPubMed Google Scholar

  3. Xavier Pennec

    You can also search for this author inPubMed Google Scholar

  4. Nicholas Ayache

    You can also search for this author inPubMed Google Scholar

Editor information

Editors and Affiliations

  1. Image Sciences Institute, University Medical Center Utrecht, Q0S.459, P.O. Box 85500, 3508, Utrecht, GA, The Netherlands

    Josien P. W. Pluim

  2. Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia

    Boštjan Likar

  3. Advanced Development, Healthcare Informatics, Philips Medical Systems, Best, The Netherlands

    Frans A. Gerritsen

Rights and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Arsigny, V., Commowick, O., Pennec, X., Ayache, N. (2006). A Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Registration. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds) Biomedical Image Registration. WBIR 2006. Lecture Notes in Computer Science, vol 4057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784012_15

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp