Part of the book series:Lecture Notes in Computer Science ((LNIP,volume 4057))
Included in the following conference series:
1827Accesses
Abstract
In this article, we focus on the parameterization of non-rigid geometrical deformations with a small number of flexible degrees of freedom . In previous work, we proposed a general framework calledpolyaffine to parameterize deformations with a small number of rigid or affine components, while guaranteeing the invertibility of global deformations. However, this framework lacks some important properties: the inverse of a polyaffine transformation is not polyaffine in general, and the polyaffine fusion of affine components is not invariant with respect to a change of coordinate system. We present here a novel general framework, calledLog-Euclidean polyaffine, which overcomes these defects. We also detail a simple algorithm, theFast Polyaffine Transform, which allows to compute very efficiently Log-Euclidean polyaffine transformations and their inverses on a regular grid. The results presented here on real 3D locally affine registration suggest that our novel framework provides a general and efficient way of fusing local rigid or affine deformations into a global invertible transformation without introducing artifacts, independently of the way local deformations are first estimated.
This is a preview of subscription content,log in via an institution to check access.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A fast and Log-Euclidean polyaffine framework for locally affine registration. Research report RR-5865, INRIA (March 2006)
Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Fast and Simple Calculus on Tensors in the Log-Euclidean Framework. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 115–122. Springer, Heidelberg (2005)
Arsigny, V., Pennec, X., Ayache, N.: Polyrigid and polyaffine transformations: a novel geometrical tool to deal with non-rigid deformations - application to the registration of histological slices. Med. Im. Anal. 9(6), 507–523 (2005)
Cheng, S.H., Higham, N.J., Kenney, C.S., Laub, A.J.: Approximating the logarithm of a matrix to specified accuracy. SIAM J. Matrix Anal. Appl. 22(4), 1112–1125 (2001)
Commowick, O., Arsigny, V., Costa, J., Malandain, G., Ayache, N.: An efficient multi-affine framework for the registration of anatomical structures. In: Proceedings of ISBI 2006. IEEE, Los Alamitos (to appear, 2006)
Cuzol, A., Hellier, P., Mémin, E.: A novel parametric method for non-rigid image registration. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 456–467. Springer, Heidelberg (2005)
Higham, N.J.: The scaling and squaring method for the matrix exponential revisited. SIAM J. Matrix Anal. Appl. 26(4), 1179–1193 (2005)
Little, J.A., Hill, D.L.G., Hawkes, D.J.: Deformations incorpotationg rigid structures. CVIU 66(2), 223–232 (1996)
Maintz, J.B.A., Viergever, M.A.: A survey of medical registration. Medical image analysis 2(1), 1–36 (1998)
Narayanan, R., Fessler, J.A., Park, H., Meyer, C.R.: Diffeomorphic nonlinear transformations: A local parametric approach for image registration. In: Christensen, G.E., Sonka, M. (eds.) IPMI 2005. LNCS, vol. 3565, pp. 174–185. Springer, Heidelberg (2005)
Papademetris, X., Dione, D.P., Dobrucki, L.W., Staib, L.H., Sinusas, A.J.: Articulated Rigid Registration for Serial Lower-Limb Mouse Imaging. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 919–926. Springer, Heidelberg (2005)
Pitiot, A., Bardinet, E., Thompson, P.M., Malandain, G.: Piecewise affine registration of biological images for volume reconstruction. Med. Im. Anal.(accepted for publication, 2005)
Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: Application to breast MR images. IEEE Trans. Medecal Imaging 18(8), 712–721 (1999)
Sheppard, D.: A two-dimensionnal interpolation function for irregularly spaced data. In: 23rd National Conference of the ACM, pp. 517–524 (1968)
Stefanescu, R., Pennec, X., Ayache, N.: Grid powered nonlinear image registration with locally adaptive regularization. Med. Im. Anal. 8(3), 325–342 (2004)
Tenenbaum, M., Pollard, H.: Ordinary Differential Equations. Dover (1985)
Author information
Authors and Affiliations
2004 Route des Lucioles, INRIA Sophia – Epidaure Project, BP 93, 06902 Cedex, Sophia Antipolis, France
Vincent Arsigny, Olivier Commowick, Xavier Pennec & Nicholas Ayache
DOSISoft S.A., 45 Avenue Carnot, 94 230, Cachan, France
Olivier Commowick
- Vincent Arsigny
You can also search for this author inPubMed Google Scholar
- Olivier Commowick
You can also search for this author inPubMed Google Scholar
- Xavier Pennec
You can also search for this author inPubMed Google Scholar
- Nicholas Ayache
You can also search for this author inPubMed Google Scholar
Editor information
Editors and Affiliations
Image Sciences Institute, University Medical Center Utrecht, Q0S.459, P.O. Box 85500, 3508, Utrecht, GA, The Netherlands
Josien P. W. Pluim
Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia
Boštjan Likar
Advanced Development, Healthcare Informatics, Philips Medical Systems, Best, The Netherlands
Frans A. Gerritsen
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arsigny, V., Commowick, O., Pennec, X., Ayache, N. (2006). A Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Registration. In: Pluim, J.P.W., Likar, B., Gerritsen, F.A. (eds) Biomedical Image Registration. WBIR 2006. Lecture Notes in Computer Science, vol 4057. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11784012_15
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-540-35648-6
Online ISBN:978-3-540-35649-3
eBook Packages:Computer ScienceComputer Science (R0)
Share this paper
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative