Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Graded BDI Models for Agent Architectures

  • Conference paper
  • First Online:

Part of the book series:Lecture Notes in Computer Science ((LNAI,volume 3487))

  • 412Accesses

  • 40Citations

Abstract

In the recent past, an increasing number of multiagent systems (MAS) have been designed and implemented to engineer complex distributed systems. Several previous works have proposed theories and architectures to give these systems a formal support. Among them, one of the most widely used is the BDI agent architecture presented by Rao and Georgeff. We consider that in order to apply agents in real domains, it is important for the formal models to incorporate a model to represent and reason under uncertainty. With that aim we introduce in this paper a general model for graded BDI agents, and an architecture, based on multi-context systems, able to model these graded mental attitudes. This architecture serves as a blueprint to design different kinds of particular agents. We illustrate the design process by formalising a simple travel assistant agent.

A preliminary version of this paper, “Modelos BDI graduados para Arquitecturas de Agentes” (in Spanish), was presented at the Argentine Symposium on Artificial Intelligence (ASAI’04) and will appear in an especial issue of “Inteligencia Artificial” (Revista Iberoamericana de Inteligencia Artificial).

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar Possibilistic Representations. In: Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence UAI 2002, pp. 45–52. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  2. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar representation and fusion of preferences in the possilistic Logic framework. In: Proceedings of the 8th International Conference on Principle of Knowledge Representation and Reasoning KR 2002, pp. 421–448 (2002)

    Google Scholar 

  3. Cimatti, A., Serafini, L.: Multi-Agent Reasoning with Belief Contexts: the Approach and a Case Study. In: Wooldridge, M., Jennings, N.R. (eds.) ECAI 1994 and ATAL 1994. LNCS, vol. 890, pp. 71–75. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  4. Dastani, M., Herzig, A., Hulstijn, J., van der Torre, L.: Inferring Trust. In: Leite, J., Torroni, P. (eds.) CLIMA 2004. LNCS (LNAI), vol. 3487, pp. 144–160. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Dennet, D.C.: The Intentional Stance. MIT Press, Cambridge (1987)

    Google Scholar 

  6. Esteva, F., Garcia, P., Godo, L.: Relating and extending semantical approaches to possibilistic reasoning. International Journal of Approximate Reasoning 10, 311–344 (1994)

    Article MathSciNet  Google Scholar 

  7. Ghidini, C., Giunchiglia, F.: Local Model Semantics, or Contextual Reasoning = Locality + Compatibility. Artificial Intelligence 127(2), 221–259 (2001)

    Article MathSciNet  Google Scholar 

  8. Giovannucci, A.: Towards Multi-Context based Agents Implementation. IIIA-CSIC Research Report (in preparation)

    Google Scholar 

  9. Giunchiglia, F., Serafini, L.: Multilanguage Hierarchical Logics (or: How we can do without modal logics). Journal of Artificial Intelligence 65, 29–70 (1994)

    Article MathSciNet  Google Scholar 

  10. Godo, L., Esteva, F., Hajek, P.: Reasoning about probabilities using fuzzy logic. Neural Network World 10, 811–824 (2000)

    Google Scholar 

  11. Goldblatt, R.: Logics of Time and Computation. CSLI Lecture Notes 7 (1992)

    Google Scholar 

  12. Hájek, P.: Metamathematics of Fuzzy Logic. In: Trends in Logic, vol. 4. Kluwer, Dordrecht (1998)

    Google Scholar 

  13. Jennings, N.R.: On Agent-Based Software Engineering. Artificial Intelligence 117(2), 277–296 (2000)

    Article  Google Scholar 

  14. Lang, J., van der Torre, L., Weydert, E.: Hidden Uncertainty in the Logical Representation of Desires. In: International Joint Conference on Artificial Intelligence, IJCAI 2003, Acapulco, Mexico (2003)

    Google Scholar 

  15. Liau, C.J.: Belief, Information Acquisition, and Trust in Multiagent Systems - a modal formulation. Artificial Intelligence 149, 31–60 (2003)

    Article MathSciNet  Google Scholar 

  16. Meyer, J.J.: Dynamic Logic for Reasoning about Actions and Agents. In: Workshop on Logic-Based Artificial Intelligence, Washington, DC, June 14–16 (1999)

    Google Scholar 

  17. Parsons, S., Sierra, C., Jennings, N.R.: Agents that reason and negotiate by arguing. Journal of Logic and Computation 8(3), 261–292 (1998)

    Article MathSciNet  Google Scholar 

  18. Parsons, S., Giorgini, P.: On using degrees of belief in BDI agents. In: Proceedings of the International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, Paris (1998)

    Google Scholar 

  19. Parsons, S., Jennings, N.J., Sabater, J., Sierra, C.: Agent Specification Using Multi-context Systems. In: Foundations and Applications of Multi-Agent Systems 2002, pp. 205–226 (2002)

    Google Scholar 

  20. Rao, A., Georgeff, M.: Modeling Rational Agents within a BDI-Architecture. In: Fikes, R., Sandewall, E. (eds.) Proceedings of the 2nd International Conference on Principles of Knowledge Representation and Reasoning (KR 1992). Morgan Kaufmann, San Mateo, CA, pp. 473–484 (1991)

    Google Scholar 

  21. Rao, A., Georgeff, M.: BDI agents: From theory to practice. In: Proceedings of the 1st International Conference on Multi-Agents Systems, pp. 312–319 (1995)

    Google Scholar 

  22. Sabater, J., Sierra, C., Parsons, S., Jennings, N.R.: Engineering executable agents using multi-context systems. Journal of Logic and Computation 12(3), 413–442 (2002)

    Article MathSciNet  Google Scholar 

  23. Sierra, C., Godo, L., López de Màntaras, R., Manzano, M.: Descriptive Dynamic Logic and its Application to Reflective Architectures. Future Generation Computer Systems 12, 157–171 (1996)

    Article  Google Scholar 

  24. Schut, M., Wooldridge, M., Parsons, S.: Reasoning About Intentions in Uncertain Domains Symbolic and Quantitative Approaches to Reasoning with Uncertainty. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 84–95. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Wooldridge, M., Jennings, N.R.: Intelligent Agents: theory and practice. The Knowledge Engineering Review 10(2), 115–152 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Depto. de Sistemas e Informática, Facultad de Cs. Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Av Pellegrini 250, 2000, Rosario, Argentina

    Ana Casali

  2. Institut d‘Investigació en Intelligència Artificial (IIIA), CSIC, Campus Universitat Autònoma de Barcelona s/n, 08193, Bellaterra, Catalunya, España

    Lluís Godo & Carles Sierra

Authors
  1. Ana Casali
  2. Lluís Godo
  3. Carles Sierra

Editor information

Editors and Affiliations

  1. Departamento de Informática, Universidade Nova de Lisboa, 2829-516, Caparica, Portugal

    João Leite

  2. DEIS, University of Bologna, V.le Risorgimento 2Q, 40136, Bologna, Italy

    Paolo Torroni

Rights and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Casali, A., Godo, L., Sierra, C. (2005). Graded BDI Models for Agent Architectures. In: Leite, J., Torroni, P. (eds) Computational Logic in Multi-Agent Systems. CLIMA 2004. Lecture Notes in Computer Science(), vol 3487. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11533092_8

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp