Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Approximating Description Logic Classification for Semantic Web Reasoning

  • Conference paper

Part of the book series:Lecture Notes in Computer Science ((LNISA,volume 3532))

Included in the following conference series:

  • 2100Accesses

  • 16Citations

Abstract

In many application scenarios, the use of the Web ontology language OWL is hampered by the complexity of the underlying logic that makes reasoning in OWL intractable in the worst case. In this paper, we address the question whether approximation techniques known from the knowledge representation literature can help to simplify OWL reasoning. In particular, we carry out experiments with approximate deduction techniques on the problem of classifying new concept expressions into an existing OWL ontology using existing Ontologies on the web. Our experiments show that a direct application of approximate deduction techniques as proposed in the literature in most cases does not lead to an improvement and that these methods also suffer from some fundamental problems.

Similar content being viewed by others

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Schaerf, M., Cadoli, M.: Tractable reasoning via approximation. Artificial Intelligence 74, 249–310 (1995)

    Article MATH MathSciNet  Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook - Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  3. Borgida, A., Etherington, D.W.: Hierarchical knowledge bases and efficient disjunctive reasoning. In: Brachman, R.J., Levesque, H.J., Reiter, R. (eds.) KR 1989: Principles of Knowledge Representation and Reasoning, pp. 33–43. Morgan Kaufmann, San Mateo (1989)

    Google Scholar 

  4. Baader, F., Küsters, R., Molitor, R.: Rewriting concepts using terminologies. In: Cohn, A.G., Giunchiglia, F., Selman, B. (eds.) Proceedings of the Seventh International Conference on Principles of Knowledge Representation and Reasoning (KR 2000), pp. 297–308. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  5. Brandt, S., Küsters, R., Turhan, A.Y.: Approximation and difference in description logics. In: Fensel, D., Giunchiglia, F., McGuiness, D., Williams, M.-A. (eds.) Proceedings of the Eighth International Conference on Principles of Knowledge Representation and Reasoning (KR 2002), pp. 203–214. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  6. McAllester, D.: Truth maintenance. In: Proceedings of AAAI 1990, pp. 1109–1116. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  7. OWL test suite,http://www.w3.org/TR/owl-test/

  8. Donini, F., Hollunder, B., Lenzerini, M., Spaccamela, A.M., Nardi, D., Nutt, W.: The complexity of existential quantification in concept languages. Artificial Intelligence 53, 309–327 (1992)

    Article MathSciNet MATH  Google Scholar 

  9. Groot, P., ten Teije, A., van Harmelen, F.: Towards a Structured Analysis of Approximate Problem Solving: a Case Study in Classification. In: Dubois, D., Welty, C., Williams, M. (eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference (KR 2004), Whistler, BC, Canada, pp. 399–406. AAAI Press, Menlo Park (2004)

    Google Scholar 

  10. ten Teije, A., van Harmelen, F.: Exploiting domain knowledge for approximate diagnosis. In: Pollack, M. (ed.) Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence (IJCAI 1997), Nagoya, Japan, vol. 1, pp. 454–459. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  11. ten Teije, A., van Harmelen, F.: Computing approximate diagnoses by using approximate entailment. In: Aiello, G., Doyle, J. (eds.) Proceedings of the Fifth International Conference on Principles of Knowledge Representation and Reasoning (KR 1996), Boston, Massachusetts. Morgan Kaufman, San Francisco (1996)

    Google Scholar 

  12. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logic. In: Proc. of the Twelfth International World Wide Web Conference (WWW 2003), pp. 48–57. ACM, New York (2003)

    Chapter  Google Scholar 

  13. Horrocks, I.: The FaCT system. In: de Swart, H. (ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 307–312. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Haarslev, V., Möller, R.: Race system description. In: Proceedings of the 1999 Description Logic Workshop (DL 1999). CEUR Electronic Workshop Proceedings, pp. 130–132 (1999)

    Google Scholar 

  15. Haarslev, V., Möller, R.: Racer system description. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Bechhofer, S., Möller, R., Crowther, P.: The dig description logic interface. In: Proceedings of DL 2003 International Workshop on Description Logics, Rome (2003)

    Google Scholar 

  17. Baker, P., Brass, A., Bechhofer, S., Goble, C., Paton, N., Stevens, R.: TAMBIS: Transparent Access to Multiple Bioinformatics Information Sources. An Overview. In: Proceedings of the Sixth International Conference on Intelligent Systems for Molecular Biology (ISMB 1998), pp. 25–34. AAAI Press, Menlow Park (1998)

    Google Scholar 

  18. Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A.: Ontology Library. WonderWeb Deliverable D18. Laboratory For Applied Ontology - ISTC-CNR (20003)

    Google Scholar 

  19. Rector, A.L., Nowlan, W.A., Glowinski, A.: Goals for concept representation in the galen project. In: Proceedings of the Seventeenth Annual Symposium on Computer Applications in Medical Care (SCAMC 1993), Washington DC, USA, pp. 414–418 (1993)

    Google Scholar 

  20. Caprotti, O., Dewar, M., Turi, D.: Mathematical service matching using description logic and owl. In: Asperti, A., Bancerek, G., Trybulec, A. (eds.) MKM 2004. LNCS, vol. 3119, pp. 73–87. Springer, Heidelberg (2004) (to appear)

    Chapter  Google Scholar 

  21. Bechhofer, S.: OWL Reasoning Examples. University of Manchester (2003),http://owl.man.ac.uk/2003/why/latest/

  22. Horrocks, I., Tessaris, S.: A conjunctive query language for description logic aboxes. In: National conference on artificial intelligence (AAAI 2000), pp. 399–404 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Radboud University Nijmegen, Toernooiveld 1, 6500GL, Nijmegen, The Netherlands

    Perry Groot

  2. Vrije Universiteit Amsterdam, de Boelelaan 1081a, 1081HV, Amsterdam, The Netherlands

    Heiner Stuckenschmidt & Holger Wache

Authors
  1. Perry Groot
  2. Heiner Stuckenschmidt
  3. Holger Wache

Editor information

Editors and Affiliations

  1. Facultad de Informática, Dpto. de Inteligencia Artificial, Ontology Engineering Group, Universidad Politécnica de Madrid, Campus de Montegancedo s/n., 28660, Boadilla del Monte, Madrid,  

    Asunción Gómez-Pérez

  2. INRIA Rhône-Alpes & LIG, 655 Avenue de l’Europe, 38330, Montbonnot Saint-Martin, France

    Jérôme Euzenat

Rights and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Groot, P., Stuckenschmidt, H., Wache, H. (2005). Approximating Description Logic Classification for Semantic Web Reasoning. In: Gómez-Pérez, A., Euzenat, J. (eds) The Semantic Web: Research and Applications. ESWC 2005. Lecture Notes in Computer Science, vol 3532. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11431053_22

Download citation

Publish with us


[8]ページ先頭

©2009-2025 Movatter.jp