Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Radon Distribution in Groundwater and River Water

  • Chapter
  • First Online:

Part of the book series:Environmental Science and Engineering ((ESE))

Abstract

Understanding the occurrence and factors controlling radon distribution in groundwater as well as surface water is important for improving its tracer applications in hydrology.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

References

  • Akingboye AS, Ogunyele AC, Jimoh AT, Adaramoye OB, Adeola AO, Ajayi T (2021) Radioactivity, radiogenic heat production and environmental radiation risk of the Basement Complex rocks of Akungba-Akoko, southwestern Nigeria: insights from in situ gamma-ray spectrometry. Environ Earth Sci 80(6):1–24

    Article  Google Scholar 

  • Anurani GR, Lakshmi R, Joseph S (2021) Evaluation of radon (222Rn) distribution and its implications vis-a-vis water quality of Killiyar River, Kerala, India. Curr World Environ 1:94–104

    Google Scholar 

  • Appleton JD, Jones DG, Miles JCH, Scivyer C (2020) Radon gas hazard. Geol Soc Lond Eng Geol Spec Publ 29(1):433–456

    Google Scholar 

  • Arabi AS, Tukur Z, Funtua II, Ali MA, Kurowska E, Abdulhamid MS, Murtala AS (2021). Radon dynamics, activity concentration, and radiological risks associated with groundwater around tremor-prone Federal Capital Territory and environs, north-central Nigeria. Arab J Geosci 14(23):1–12

    Google Scholar 

  • Belgacem A, Souid F, Telahigue F, Kharroubi A (2015) Temperature and radon-222 as tracer of groundwater flow: application to El Hamma geothermal aquifer system, southeastern Tunisia. Arab J Geosci 8(12):11161–11174

    Article CAS  Google Scholar 

  • Bemis K, Lowell RP, Farough A (2012) Diffuse flow: on and around hydrothermal vents at mid-ocean ridges. Oceanography 25(1):182–191

    Article  Google Scholar 

  • Benjmel K, Amraoui F, Boutaleb S, Ouchchen M, Tahiri A, Touab A (2020) Mapping of groundwater potential zones in crystalline terrain using remote sensing, GIS techniques, and multicriteria data analysis (case of the Ighrem region, Western Anti-Atlas, morocco). Wat 12:471

    Google Scholar 

  • Bhosale D, Kumar CP (2002) Simulation of seawater intrusion in Ernakulam coast. In: Proceeding of international conference on hydrology and watershed management, Hyderabad, pp 390–399

    Google Scholar 

  • Bonczyk M, Chałupnik S, Howaniec N, Smoliński A, Wysocka M (2019) Testing device for radon migration experiments, the construction and preliminary results. Pure Appl Geophys 176(6):2557–2564

    ADS  Google Scholar 

  • Bourai AA, Aswal S, Kandari T, Kumar S, Joshi V, Sahoo BK, Ramola RC (2016) Study of radon flux from soil in Budhakedar region using SRM. Radiat Prot Dosimetry 171(2):267–270

    Article CAS PubMed  Google Scholar 

  • Bourke SA, Cook PG, Shanafield M, Dogramaci S, Clark JF (2014) Characterisation of hyporheic exchange in a losing stream using radon-222. J Hydrol 519:94–105

    Article CAS  Google Scholar 

  • Braun I (2006) Pan-African granitic magmatism in the Kerala Khondalite Belt, southern India. J Asian Earth Sci 28(1):38–45

    Article ADS  Google Scholar 

  • Chacko T, Kumar GR, Newton RC (1987) Metamorphic PT conditions of the Kerala (South India) khondalite belt, a granulite facies supracrustal terrain. J Geol 95(3):343–358

    Article ADS CAS  Google Scholar 

  • Cho BW (2017) Radon concentrations in groundwater of the Goesan Area, Korea. J Soil Groundwater Environ 22(5):63–70

    Google Scholar 

  • Cho BW, Choo CO (2019) Geochemical behavior of uranium and radon in groundwater of Jurassic granite area, Icheon, Middle Korea. Water 11(6):1278

    Article ADS CAS  Google Scholar 

  • Cinelli G, De Cort M, Tollefsen T, Achatz M, Ajtić J, Ballabio C, Barnet I, Bochicchio F, Borelli P, Bossew P, Braga R (2019) Radon-Chapter 5. In: European atlas of natural radiation. Publication Office of the European Union

    Google Scholar 

  • Cinti D, Vaselli O, Poncia PP, Brusca L, Grassa F, Procesi M, Tassi F (2019) Anomalous concentrations of arsenic, fluoride and radon in volcanic-sedimentary aquifers from central Italy: quality indexes for management of the water resource. Environ Pollut 253:525–537

    Article CAS PubMed  Google Scholar 

  • Cochran JK, Kadko DC (2008) Uranium-and thorium-series radionuclides in marine groundwaters. Radioact Environ 13:345–382

    Article CAS  Google Scholar 

  • Durrani SA, Ilic R (eds) (1997) Radon measurements by etched track detectors: Applications in radiation protection, earth sciences and the environment. World Sci Publ Co., Ltd., London

    Google Scholar 

  • Fleischer RL, Mogro-Campero A (1978) Mapping of integrated radon emanation for detection of long-distance migration of gases within the earth: techniques and principles. J Geophys Res Solid Earth 83(B7):3539–3549

    Article CAS  Google Scholar 

  • Frei S, Gilfedder BS (2021) Quantifying residence times of bank filtrate: a novel framework using radon as a natural tracer. Water Res 201:117376

    Article CAS PubMed  Google Scholar 

  • Galiana-Merino JJ, Molina S, Kharazian A, Toader VE, Moldovan IA, Gómez I (2022) Analysis of Radon Measurements in Relation to Daily Seismic Activity Rates in the Vrancea Region, Romania. Sensors 22(11):4160

    Google Scholar 

  • Giletti BJ, Kulp JL (1955) Radon leakage from radioactive minerals. Ame Mineral: J Earth Planet Mater 40(5–6):481–496

    CAS  Google Scholar 

  • Gilfedder BS, Frei S, Hofmann H, Cartwright I (2015) Groundwater discharge to wetlands driven by storm and flood events: Quantification using continuous Radon-222 and electrical conductivity measurements and dynamic mass-balance modelling. Geochim Cosmochim Acta 165:161–177

    Article ADS CAS  Google Scholar 

  • Girault F, Perrier F, Przylibski TA (2018) Radon-222 and radium-226 occurrence in water: a review. Geol Soc Lond Spec Publ 451(1):131–154

    Article  Google Scholar 

  • Girault F, Perrier F (2014) The Syabru‐Bensi hydrothermal system in central Nepal: 2. modeling and significance of the radon signature. J Geophys Res Solid Earth 119(5):4056–4089

    Google Scholar 

  • Gruber V, Bossew P, De Cort M, Tollefsen T (2013) The European map of the geogenic radon potential. J Radiol Prot 33:51–60

    Google Scholar 

  • Gundersen LC, Schumann RR, Otton JK, Dubiel RF, Owen DE, Dickinson KA (1992) Geology of radon in the United States. Geol Soc Am Spec Pap 271:1–16

    Google Scholar 

  • Harrington N, Noordijn S, Cook P (2012) Evaluation of approaches to modelling surface water-groundwater interactions around drains in the South East of South Australia. Phase 1. Goyder Inst Water Res Tech Rep Ser 12(1)

    Google Scholar 

  • Heriawan MN, Syafi’i AA, Saepuloh A, Kubo T, Koike K (2021) Detection of near-surface permeable zones based on spatial correlation between radon gas concentration and DTM-derived lineament density. Nat Resour Res 30(4):2989–3015

    Google Scholar 

  • Horvath A, Bohus LO, Urbani F, Marx G, Piroth A, Greaves ED (2000) Radon concentrations in hot spring waters in northern Venezuela. J Environ Radioact 47(2):127–133

    Article CAS  Google Scholar 

  • Idriss H, Salih I, Sam A (2011) Study of radon in ground water and physicochemical parameters in Khartoum state. J Radioanal Nucl Chem 290(2): 333–338

    Google Scholar 

  • Ioannides K, Papachristodoulou C, Stamoulis K, Karamanis D, Pavlides S, Chatzipetros A, Karakala E (2003) Soil gas radon: a tool for exploring active fault zones. Appl Radiat Isot 59(2–3):205–213

    Article CAS PubMed  Google Scholar 

  • Jacob N, Babu DS, Shivanna K (2009) Radon as an indicator of submarine groundwater discharge in coastal regions. Curr Sci 97:1313–1320

    Google Scholar 

  • Jalili-Majareshin A, Behtash A, Rezaei-Ochbelagh D (2012) Radon concentration in hot springs of the touristic city of Sarein and methods to reduce radon in water. Radiat Phys Chem 81(7):749–757

    Google Scholar 

  • Kalip A, Haque MF, Gaiya S (2018) Estimation of annual effective dose due to ingestion and inhalation of radon in groundwater from Kaduna, Nigeria. Phys Sci Int J 19(3):1–12

    Article  Google Scholar 

  • Knutsson G, Olofsson B (2002) Radon content in groundwater from drilled wells in the Stockholm region of Sweden. Norg Geol Under Bull 439:79–85

    Google Scholar 

  • Koike K, Yoshinaga T, Asaue H (2014) Characterizing long-term radon concentration changes in a geothermal area for correlation with volcanic earthquakes and reservoir temperatures: a case study from Mt. Aso, southwestern Japan. J Volcanol Geoth Res 275: 85–102

    Google Scholar 

  • Kumar A, Sharma S, Mehra R, Kanwar P, Mishra R, Kaur I (2018) Assessment of radon concentration and heavy metal contamination in groundwater of Udhampur district, Jammu & Kashmir, India. Environ Geochem Health 40(2):815–831

    Article CAS PubMed  Google Scholar 

  • Lekshmi R, Arunima S, Jojo PJ (2018) Determination of radon exhalation rates and emanation factor of some soil samples collected from Southern Seashore of Kerala, India. J Ultra Sci Phys Sci (JUSPS-A) 30:80

    Google Scholar 

  • Manisa K, Erdogan M, Zedef V, Bircan H, Biçer A (2022) Variations of 222Rn concentrations over active fault system in Simav, Kütahya, Western Turkey: Possible causes for soil-gas222Rn anomalies. Appl Radiat Isot 190:110484

    Google Scholar 

  • Martins L, Pereira A, Oliveira A, Fernandes A, Sanches Fernandes LF, Pacheco FAL (2019) An assessment of groundwater contamination risk with radon based on clustering and structural models. Water 11(5):1107

    Google Scholar 

  • Mercadier J, Annesley IR, McKechnie CL, Bogdan TS, Creighton S (2013) Magmatic and metamorphic uraninite mineralization in the western margin of the Trans-Hudson orogen (Saskatchewan, Canada): a uranium source for unconformity-related uranium deposits? Econ Geol 108(5):1037–1065

    Article CAS  Google Scholar 

  • Moore WS, Frankle JD, Benitez‐Nelson CR, Früh‐Green GL, Lang SQ (2021) Activities of 223Ra and226Ra in fluids from the Lost City hydrothermal field require short fluid residence times. J Geophys Res Oceans 126(12):e2021JC017886

    Google Scholar 

  • Nagabhushana SR, Suresh S, Sannappa J, Srinivasa E (2020) Study on activity of radium, radon and physicochemical parameters in ground water and their health hazards around Tumkur industrial area. J Radioanal Nucl Chem 323(3):1393–1403

    Article CAS  Google Scholar 

  • Nandakumaran P, Vinayachandran N (2020) A preliminary appraisal of radon concentration in groundwater from the high background radiation area (HBRA) of Coastal Kerala. J Geol Soc India 95(5):491–496

    Article CAS  Google Scholar 

  • Naskar AK, Gazi M, Barman C, Chowdhury S, Mondal M, Ghosh D, Sinha B, Deb A (2018) Estimation of underground water radon danger in Bakreswar and Tantloi Geothermal Region, India. J Radioanal Nucl Chem 315(2):273–283

    Article CAS  Google Scholar 

  • Nguyen PTH, Vu NB, Le Cong H (2018) Soil radon gas in some soil types in the rainy season in Ho Chi Minh City, Vietnam. J Environ Radioact 193:27–35

    Article PubMed  Google Scholar 

  • Niranjan RS, Ningappa C, Yashaswini T, Chamaraja NA, Rangaswamy DR, Sannappa J (2017) Studies on radon concentration in drinking water around Hemavathi river basin, Karnataka State, India. J Radioanal Nucl Chem 314(1):321–331

    Article CAS  Google Scholar 

  • Nugraha ED, Hosoda M, Mellawati J, Untara U, Rosianna I, Tamakuma Y, Modibo OB, Kranrod C, Kusdiana K, Tokonami S (2021) Radon activity concentrations in natural hot spring water: dose assessment and health perspective. Int J Environ Res Public Health 18(3):920

    Article CAS PubMed PubMed Central  Google Scholar 

  • Ogden AE, Welling WB, Funderburg RD, Boschult LC (2020) A preliminary assessment of factors affecting radon levels in Idaho. In: Radon, radium, and other radioactivity in ground water. CRC Press, pp 83–96

    Google Scholar 

  • Pereira A, Lamas R, Miranda M, Domingos F, Neves L, Ferreira N, Costa L (2017) Estimation of the radon production rate in granite rocks and evaluation of the implications for geogenic radon potential maps: a case study in Central Portugal. J Environ Radioact 166:270–277

    Article CAS PubMed  Google Scholar 

  • Pinto PV, Kumara KS, Karunakara N (2020) Mass exhalation rates, emanation coefficients and enrichment pattern of radon, thoron in various grain size fractions of monazite rich beach placers. Radiat Meas 130:106220

    Article CAS  Google Scholar 

  • Pommé S (2015) Typical uncertainties in alpha-particle spectrometry. Metrologia 52(3):S146

    Article ADS  Google Scholar 

  • Przylibski TA (2011) Shallow circulation groundwater–the main type of water containing hazardous radon concentration. Nat Hazard 11(6):1695–1703

    Article  Google Scholar 

  • Przylibski TA (2015) Radon research in Poland: a review. Solid State Phenom 238:90–115

    Article  Google Scholar 

  • Przylibski TA (2018a) Radon. A radioactive therapeutic element. In: Gillmore GK, Perrier FE, Crockett RGM (eds) Radon, health and natural hazards, vol 451. Geological Society, London, Special Publications, pp 209–236

    Google Scholar 

  • Przylibski TA (2018b) Radon: a radioactive therapeutic element. Geol Soc Lond Spec Publ 451(1):209–236

    Article  Google Scholar 

  • Przylibski TA, Gorecka J (2014)222Rn activity concentration differences in groundwaters of three Variscan granitoid massifs in the Sudetes (NE Bohemian Massif, SW Poland). J Environ Radioact 134:43–53

    Article CAS PubMed  Google Scholar 

  • Przylibski TA, Domin E, Gorecka J, Kowalska A (2020)222Rn concentration in groundwaters circulating in granitoid massifs of Poland. Water 12(3):748

    Article CAS  Google Scholar 

  • Przylibski TA, Staśko S, Domin E (2022) Radon groundwater in a radon-prone area: possible uses and problems: an example from SW part of Kłodzko Valley, Sudetes, SW Poland. Environ Geochem Health 1–17

    Google Scholar 

  • Przylibski TA (2005) Radon, specific component of medicinal waters in the Sudety Mountains. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław, (in Polish)

    Google Scholar 

  • Raju GK, Mathai J, Kumar GR, Nair NGK (1986) Natural radioactivity distribution studies in Trivandrum district, Kerala, India. Proc Indian Acad Sci-Earth Planet Sci 95(3):397–407

    Article ADS CAS  Google Scholar 

  • Ramsiya M, Joseph A, Eappen KP, Visnuprasad AK (2019) Activity concentrations of radionuclides in soil samples along the coastal areas of Kerala, India and the assessment of radiation hazard indices. J Radioanal Nucl Chem 320(2):291–298

    Article CAS  Google Scholar 

  • Ravikumar P, Davis D, Mathew S, Somashekar RK, Prakash KL (2014) Spatio-temporal variation in radon concentration in groundwater with respect to rock types: a case study from Chitradurga district, Karnataka. J Geol Soc India 83(2):156–164

    Article CAS  Google Scholar 

  • Ray L, Roy S, Srinivasan R (2008) High radiogenic heat production in the Kerala Khondalite block, Southern Granulite province, India. Int J Earth Sci 97(2):257–267

    Article CAS  Google Scholar 

  • Robertson A, Allen J, Laney R, Curnow A (2013) The cellular and molecular carcinogenic effects of radon exposure: a review. Int J Mol Sci 14(7):14024–14063

    Article PubMed PubMed Central  Google Scholar 

  • Sakoda A, Ishimori Y (2014) Calculation of temperature dependence of radon emanation due to alpha recoil. J Radioanal Nucl Chem 299(3):2013–2017

    Article CAS  Google Scholar 

  • Sakoda A, Hanamoto K, Ishimori Y, Nagamatsu T, Yamaoka K (2008) Effects of some physical conditions on leaching rate of radon from radioactive minerals originating from some hot springs. Radiat Meas 43(1):106–110

    Article CAS  Google Scholar 

  • Singaraja C, Chidambaram S, Jacob N, Selvam S, Johnsonbabu G, Anandhan P (2016) Radon levels in groundwater in the Tuticorin district of Tamil Nadu, South India. J Radioanal Nucl Chem 307:1165–1173

    Google Scholar 

  • Schaper JL, Zarfl C, Meinikmann K, Banks EW, Baron S, Cirpka OA, Lewandowski J (2022) Spatial variability of radon production rates in an alluvial aquifer affects travel time estimates of groundwater originating from a losing stream. Water Resour Res 58(4):e2021WR030635

    Google Scholar 

  • Scheib C, Appleton JD, Miles JCH, Hodgkinson E (2013a) Geological controls on radon potential in England. Proc Geol Assoc 124:910–928

    Article  Google Scholar 

  • Scheib C, Appleton JD, Miles JCH, Hodgkinson E (2013b) Geological controls on radon potential in England. Proc Geol Assoc 124(6):910–928

    Article  Google Scholar 

  • Sharma DA, Keesari T, Rishi MS, Thakur N, Pant D, Sangwan P, Sahoo BK, Kishore N (2020) Distribution and correlation of radon and uranium and associated hydrogeochemical processes in alluvial aquifers of northwest India. Environ Sci Pollut Res 27(31):38901–38915

    Article CAS  Google Scholar 

  • Soman K (1987) Geology of Kerala. Geological Survey of India, Bangalore

    Google Scholar 

  • Soman K (2002) Geology of Kerala. J Geol Soc India, Bangalore 335

    Google Scholar 

  • Somashekar R, Ravikumar P (2010) Radon concentration in groundwater of Varahi and Markandeya river basins, Karnataka State, India. J Radioanal Nucl Chem 285(2):343–351

    Article CAS  Google Scholar 

  • Sukanya S, Noble J, Joseph S (2021) Factors controlling the distribution of radon (222Rn) in groundwater of a tropical mountainous river basin in southwest India. Chemosphere 263:128096

    Google Scholar 

  • Tabar E, Yakut H (2014) Radon measurements in water samples from the thermal springs of Yalova basin, Turkey. J Radioanal Nucl Chem 299(1):311–319

    Article CAS  Google Scholar 

  • Tallini M, Parisse B, Petitta M, Spizzico M (2013) Long-term spatio-temporal hydrochemical and222Rn tracing to investigate groundwater flow and water–rock interaction in the Gran Sasso (central Italy) carbonate aquifer. Hydrogeol J 21(7):1447–1467

    Article ADS CAS  Google Scholar 

  • Tanner AB (1964) Radon migration in the ground: a review. Nat Radiat Environ 161–190

    Google Scholar 

  • Terray L, Gauthier PJ, Breton V, Giammanco S, Sigmarsson O, Salerno G, Caltabiano T, Falvard A (2020) Radon activity in volcanic gases of Mt. Etna by passive dosimetry. J Geophys Res Solid Earth 125(9):p.e2019JB019149

    Google Scholar 

  • Thivya C, Chidambaram S, Thilagavathi R, Keesari T, Rao MS, Prasanna MV, Nepolian M (2015) Occurrence of high uranium and radon in hard rock aquifers of South India-evaluating the temporal and spatial trends. Groundw Sustain Dev 1(1–2):68–77

    Article  Google Scholar 

  • Todd DK, Mays LW (2005) Groundwater hydrology, 3rd edn. Wiley, New York

    Google Scholar 

  • Tolche AD (2020) Groundwater potential mapping using geospatial techniques: a case study of Dhungeta-Ramis sub-basin, Ethiopia. Geol Ecol Landsc 5:1–16

    Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (2009) UNSCEAR 2006 report, vol II, annex E: sources-to-effects assessment for radon in homes and workplaces. United Nations, New York

    Google Scholar 

  • United Nations Scientific Committee on the Effects of Atomic Radiation (2000) UNSCEAR 2000 report, vol I: sources. United Nations

    Google Scholar 

  • Watson RJ, Smethurst MA, Ganerød GV, Finne I, Rudjord AL (2017) The use of mapped geology as a predictor of radon potential in Norway. J Environ Radioact 166:341–354

    Article CAS PubMed  Google Scholar 

  • WHO (2009) WHO handbook on indoor radon: a public health perspective. World Health Organization, France

    Google Scholar 

  • Wollenberg HA (1975) Radioactivity of geothermal systems (No. LBL-3232; CONF-750525-12). California Univ., Berkeley (USA). Lawrence Berkeley Lab

    Google Scholar 

  • Wood WW, Kraemer TF, Shapiro A (2004) Radon (222Rn) in ground water of fractured rocks: a diffusion/ion exchange model. Groundwater 42(4):552–567

    Article CAS  Google Scholar 

  • Ye YJ, Xia XQ, Dai XT, Huang CH, Guo Q (2019) Effects of temperature, salinity, and pH on222Rn solubility in water. J Radioanal Nucl Chem 320(2):369–375

    Article CAS  Google Scholar 

  • Zemour Y, Mebrouk N, Mayer A, Mekebret I, Sherif MI (2023) Hydrochemical and geological controls on dissolved radium and radon in northwestern Algeria hydrothermal groundwaters. Chemosphere 313:137573

    Google Scholar 

  • Zhang S, Shi Z, Wang G, Yan R, Zhang Z (2022) Application of the extreme gradient boosting method to quantitatively analyze the mechanism of radon anomalous change in Banglazhang hot spring before the Lijiang Mw 7.0 earthquake. J Hydrol 612:128249

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Environmental Sciences, University of Kerala, Thiruvananthapuram, Kerala, India

    Sukanya S. & Sabu Joseph

Authors
  1. Sukanya S.
  2. Sabu Joseph

Corresponding author

Correspondence toSukanya S..

Appendix

Appendix

See Table3.3.

Table 3.3222Rn activity and physicochemical parameters of groundwater collected from the Karamana River Basin (KRB), India (data from Sukanya et al.2021)

Rights and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

S., S., Joseph, S. (2023). Radon Distribution in Groundwater and River Water. In: Environmental Radon. Environmental Science and Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-2672-5_3

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp