Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Bifurcation Theory, Symmetry Breaking and Homogenization in Continuum Mechanics Descriptions of DNA

Mathematical Modelling of the Physics of the Double Helix

  • Chapter
  • 549Accesses

  • 6Citations

Abstract

The study of DNA minicircles, i.e. closed loops of the double helix with lengths of the order of a few hundred base pairs, is a commonly used experimental technique to probe the sequence-dependent mechanical properties of DNA, such as stiffnesses and intrinsic shape. This article reviews how the mathematical methods of bifurcation theory and symmetry breaking can be used to compute the sequence-dependent equilibrium shapes of mini-circles. The computations yield quite good comparison with experimental data, despite the fact that they assume an isotropic bending law for the DNA, and that at the single base-pair scale the bending response of DNA is almost certainly strongly anisotropic. The effective isotropic behavior can be explained via a two-scale expansion involving the high intrinsic twist parameter of the DNA double helix (one turn per 10.5 base pairs). The effective isotropic stiffnesses can be found in terms of the local anisotropic stiffnesses via a study of the lowest order term in this expansion. However to understand the first correction, symmetry breaking techniques are again required.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Watson J.D. and Crick F.H.C., “A Structure for Deoxyribonucleic Acid”, Nature,171 737–8, 1953

    Article  Google Scholar 

  2. Watson J.D.The Double Helix, Norton Critical Edition, Ed. Gunther S. Stent, New York and London, W.W. Norton and Company, 1980

    Google Scholar 

  3. Maddox, Brenda,Rosalind Franklin:The Dark Lady of DNA, New York, HarperCollins, 2002

    Google Scholar 

  4. Vologodskii, A.Topology and Physics of Circular DNA, Boca Raton, CRC Press, 1992

    Google Scholar 

  5. Stasiak, A. “Circular DNA”, inLarge Ring Molecules, Ed. J.A. Semlyen, Chichester, John Wiley and Sons, 1996

    Google Scholar 

  6. Câlugâreanu, G. “L’Intégrale De Gauss et L’analyse des Noeuds Tridimensionnels,” R. de Math. Pures and Appliquees, 4, 5–20, 1959

    Google Scholar 

  7. Câlugâreanu, G. “Sur les Classes D’Isotopie des Noeuds Tridimensionnels et Leurs Invariants,” Czech. Math. J.,11, 588–625, 1961

    Google Scholar 

  8. Fuller, Brock F., “The Writhing Number of a Space Curve”, PNAS USA,68, #4, 815–819, 1971

    Google Scholar 

  9. Fuller, Brock F., “Decomposition of the Linking Number of a Closed Ribbon: A Problem from Molecular Biology”, PNAS USA,75, #8, 3557–3561, 1978

    Google Scholar 

  10. White, J. H., “Self-Linking and the Gauss Integral in Higher Dimensions”, Amer. J. Math.,91, 963–728, 1969

    Article  Google Scholar 

  11. White, J. H. and Bauer, W. R., “Calculation of the Twist and the Writhe for Representative Models of DNA”, J. Mol. Biol.,189, 329341, 1986

    Google Scholar 

  12. Voet, D. and Voet, J.G.Biochemistry 2nd Ed. New York, John Wiley and Sons, 1995

    Google Scholar 

  13. Various authors in Special Issues, Science, April 11, 2003, and Nature, April 24, 2003.

    Google Scholar 

  14. Keller, Joseph B.,“Semiclassical Mechanics”, SIAM Review,27, 485–504, 1985

    Article MathSciNet MATH  Google Scholar 

  15. Keller, Joseph B., and Rubinow S.I., “Slender-Body Theory for Slow Viscous Flow”, J. Fluid Mech. 75, 705–714, 1976

    Article MATH  Google Scholar 

  16. Keller, Joseph B., and Rubinow S.I., “Swimming of Flagellated Microorganisms”, B.ophys. J.,16, 151–170, 1976

    Google Scholar 

  17. Mohanty, Udayan, and Taubes, Clifford Henry, “Dynamics of Bent Molecules in Gels” J. Phys. Chem. B, 107, 6187–6193, 2003

    Article  Google Scholar 

  18. Manning R.S. and Maddocks J.H., “Symmetry breaking and the twisted elastic ring”, Comp. Meth. Appl. Mech. Eng. 170, 313–330, 1999

    Article MathSciNet MATH  Google Scholar 

  19. Kehrbaum S. and Maddocks J.H., “Effective properties of elastic rods with high intrinsic twist”, Proc. 16th IMACS World Congress, Lausanne, 2000

    Google Scholar 

  20. Rey S.,Symmetry Breaking,Averaging and Elastic Rods with High Intrinsic Twist, Ph. D. Thesis, EPF—Lausanne, 2002

    Google Scholar 

  21. Dichmann D.J., Li Y. and Maddocks J.H., “Hamiltonian formulations and symmetries in rod mechanics”, inMathematical Approaches to Biomolecular Structure and Dynamics, The IMA Volumes in Mathematics and its Applications82, 71–113, 1996

    Google Scholar 

  22. Manning R.S., Maddocks J.H. and Kahn J.D., “A continuum rod model of sequence-dependent DNA structure”, J. Chem. Phys.105, 5626–5646, 1996

    Article  Google Scholar 

  23. Kehrbaum S.,Hamiltonian Formulations of the Equilibrium Conditions Governing Elastic Rods: Qualitative Analysis and Effective Properties, Ph.D. Thesis, University of Maryland, 1997

    Google Scholar 

  24. Kehrbaum S. and Maddocks J.H., “Elastic rods, rigid bodies, quaternions and the last quadrature”, Phil. Trans. R. Soc. Lond. A355, 2117–2136, 1997

    Article MathSciNet MATH  Google Scholar 

  25. Rey S. and Maddocks J.H., “Buckling of an Elastic Rod with High Intrinsic Twist”, Proc. 16th IMACS World Cong. Lausanne, 2000

    Google Scholar 

  26. Furrer P.B., Manning R.S. and Maddocks J.H., “DNA Rings with Multiple Energy Minima”, Biophysical J.79, 116–136, 2000

    Article  Google Scholar 

  27. Calladine C.R. and Drew H.R.Understanding DNA: The molecule and how it works 2nd Ed. London, Academic Press, 1997

    Google Scholar 

  28. Bednar J., Furrer P., Katritch V., Stasiak A.Z., Dubochet J. and Stasiak A. “Determination of DNA Persistence Length by CryoElectron Microscopy. Separation of the Static and Dynamic Contributions to the Apparent Persistence Length of DNA”, J. Mol. Biol.254, 579–594, 1995

    Article  Google Scholar 

  29. Dustin I., Furrer P., Stasiak A., Dubochet J., Langowski J. and Egel-man, E., “Spatial Visualization of DNA in Solution”, J. of Structural Biol.,107, 15–21, 1991

    Article  Google Scholar 

  30. Bednar J., Furrer P., Stasiak A., Dubochet J., Egelman E. H. and Bates A. D., “The twist, writhe and overall shape of supercoiled DNA change during counterion-induced transition from a loosely to a tightly interwound superhelix. Possible implications for DNA structure in vivo”, J. Mol. Biol.235, 825–847, 1994

    Article  Google Scholar 

  31. ] Zhang, Yongli, and Crothers, Donald M. “Statistical Mechanics of Sequence-Dependent Circular DNA and Its Application For DNA Cyclization”, Biophysical J. 84, 136–153, 2003

    Article  Google Scholar 

  32. Olson W.K., Gorin A.A, Lu X.J., Hock L.M. and Zhurkin V.B., “DNA sequence-dependent deformability deduced from protein-DNA crystal complexes”, PNAS USA95, 11163–11168, 1998

    Article  Google Scholar 

  33. Lankas F., Sponer J., Hobza P. and Langowski J. “Sequence-dependent elastic properties of DNA” J. Mol. Biol.299, 695–709, 2000

    Article  Google Scholar 

  34. Lankas F., Sponer J., Langowski J. and Cheatham III, T.E. “ DNA base-pair step deformability inferred from molecular dynamics simulations” Biophysical J., in press

    Google Scholar 

  35. Scipioni A., Anselmi C., Zuccheri G., Samori B. and DeSantis P. “Sequence-dependent DNA curvature and flexibility from scanning force microscopy images” Biophysical J.83, 2408–2418, 2002

    Article  Google Scholar 

  36. Gonzalez O. and Maddocks J.H., “Extracting parameters for base-pair level models of DNA from molecular dynamics simulations”, Theoretical Chemistry Accounts106, 76–82, 2001.

    Article  Google Scholar 

  37. Antman S.S.,Nonlinear Problems of Elasticity, New York, Springer-Verlag, 1995

    Book MATH  Google Scholar 

  38. Michell, J.H., “On the stability of a bent and twisted wire,” Messenger of Math. 11, 181–184, 1889–90

    Google Scholar 

  39. Zajac, E.E., “Stability of two planar loop elasticas” ASME J. Applied Mech. 136–142, March, 1962

    Google Scholar 

  40. Le Bret M. “Catastrophic Variation of Twist and Writhing of Circular DNAs with Constraint?”, Biopolymers,18, 1709–1725, 1979

    Article  Google Scholar 

  41. Benham, C.J., “Geometry and Mechanics of DNA Superhelicity”, Biopolymers,22, 2477–2495, 1983

    Article  Google Scholar 

  42. Stuart, C.A. “Bifurcation of homoclinic orbits and bifurcation from the essential spectrum”, SIAM J. Math. Anal.20, 1145–1171, 1989

    MathSciNet MATH  Google Scholar 

  43. Ambrosetti, A. and Badiale, M., “Homoclinics: Poincaré-Melnikov type results via a variational approach”, Ann. Inst. Henri Poincaré 15, 233–252, 1998

    Article MathSciNet MATH  Google Scholar 

  44. Marko, J.F. and Siggia, E.D. “Bending and Twisting Elasticity of DNA”, Macromolecules, 27, 981–988, 1994

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Bernoulli Mathematics Institute, Swiss Federal Institute of Technology-Lausanne, CH-1015, Ecublens, Switzerland

    John H. Maddocks

Authors
  1. John H. Maddocks

Editor information

Editors and Affiliations

  1. Department of Aerospace Engineering, Technion — Israel Institute of Technology, Haifa, Israel

    Dan Givoli

  2. Department of Mathematics, University of Basel, Basel, Switzerland

    Marcus J. Grote

  3. Department of Mathematics, Stanford University, Stanford, California, USA

    George C. Papanicolaou

Rights and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maddocks, J.H. (2004). Bifurcation Theory, Symmetry Breaking and Homogenization in Continuum Mechanics Descriptions of DNA. In: Givoli, D., Grote, M.J., Papanicolaou, G.C. (eds) A Celebration of Mathematical Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0427-4_7

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp