Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Nonreflecting Boundary Conditions for Time Dependent Waves

  • Chapter
  • 548Accesses

Abstract

Exact nonreflecting boundary conditions for time dependent acoustic, electro-magnetic, and elastic waves are reviewed. These boundary conditions are global over the artificial boundary, but local in time. They involve only first derivatives of the solution; hence, they are easily combined with finite difference or finite element methods in the interior. Their high accuracy and performance is illustrated via a numerical experiment.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. B. Engquist and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comp.31, pp. 629 (1977).

    Article MathSciNet MATH  Google Scholar 

  2. A. Bayliss und E. Turkel, “Radiation boundary conditions for wavelike equations”, Comm. Pure Appl. Math.33, pp. 707 (1980).

    Article MathSciNet MATH  Google Scholar 

  3. R. L. Higdon, “Numerical absorbing boundary conditions for the wave equation”, Math. Comp.49, 65 (1987).

    Article MathSciNet MATH  Google Scholar 

  4. D. Givoli, Numerical Methods for Problems in Infinite Domains (Studies in Applied Mechanics 33, Elsevier, 1992 ).

    Google Scholar 

  5. S. V. Tsynkov, “Numerical solution of problems on unbounded domains. A review”, Appl. Num. Math.27, pp. 465 (1998).

    Article MathSciNet MATH  Google Scholar 

  6. T. Hagstrom and S. I. Hariharan, “A formulation of asymptotic and exact boundary conditions using local operators”, Appl. Num. Math. 27, pp. 403 (1998).

    Article MathSciNet MATH  Google Scholar 

  7. M. Israeli and S. A. Orszag, “Approximation of radiation boundary conditions”, J. Comp. Phys.41, pp. 115 (1981).

    Article MathSciNet MATH  Google Scholar 

  8. J.-P. Bérenger, “A perfectly matched layer for the absorbtion of electromagnetic waves”, J. Comp. Phys.114, pp. 185 (1994).

    Article MATH  Google Scholar 

  9. L. Ting and M. J. Miksis, “Exact boundary conditions for scattering problems”, J. Acoust. Soc. Amer.80, pp. 1825 (1986).

    Article  Google Scholar 

  10. D. Givoli and D. Cohen, “Nonreflecting boundary conditions based on Kirchhoff-type formulae”, J. Comput. Phys.117, pp. 102 (1995).

    Article MathSciNet MATH  Google Scholar 

  11. M. J. Grote and J. B. Keller, “Exact nonreflecting boundary conditions for the time dependent wave equation”, SIAM J. Appl. Math.55, pp. 280 (1995).

    MathSciNet MATH  Google Scholar 

  12. M. J. Grote and J. B. Keller, “Nonreflecting boundary conditions for time dependent scattering”, J. Comp. Phys.127, pp. 52 (1996).

    Article MathSciNet MATH  Google Scholar 

  13. M. J. Grote and J. B. Keller, “Nonreflecting boundary conditions for Maxwell’s equations”, J. Comp. Phys.139, pp. 327 (1998).

    Article MathSciNet MATH  Google Scholar 

  14. M. J. Grote and J. B. Keller, “Nonreflecting boundary conditions for elastic waves”, SIAM J. Appl. Math.60, pp. 803 (2000).

    MathSciNet MATH  Google Scholar 

  15. M. J. Grote, “Nonreflecting boundary conditions for elastodynamic scattering”, J. Comput. Phys.,161, pp. 331 (2000).

    Article MathSciNet MATH  Google Scholar 

  16. M. J. Grote, Nonreflecting boundary conditions for electromagnetic scattering, Int. J. Numer. Model. 13, pp. 397 (2000)

    Article MathSciNet MATH  Google Scholar 

  17. W. Bangerth, M. J. Grote, and C. Hohenegger, Finite Element Method for Time Dependent Scattering: Nonreflecting Boundary Conditions, Adaptivity, and Energy Decay, Comp. Meth. Appl. Mech. Engin., submitted.

    Google Scholar 

  18. B. Alpert, L. Greengard and T. Hagstrom, “Rapid evaluation of nonreflecting boundary kernels for time-domain wave propagation”, SIAM J. Numer. Anal. 37, pp. 1138 (2000).

    Article MathSciNet MATH  Google Scholar 

  19. T. Hagstrom, “Radiation boundary conditions for the numerical simulation of waves”, Acta Numerica (Cambridge University Press), pp. 47 (1999).

    Google Scholar 

  20. Ch. Lubich and A. Sch¨adle, Fast convolution for nonreflecting boundary conditions, SIAM J. Sc. Comput.24, pp. 161 (2002).

    MathSciNet MATH  Google Scholar 

  21. D. Hoch, A high order finite element method for time dependent scattering in complex geometry, Diploma thesis, ETH Zurich, 2001 (supervisor, M.J. Grote).

    Google Scholar 

  22. M.J. Grote and Ch. Kirsch, “Dirichlet-to-Neumann boundary conditions for multiple scattering problems”, J. Comput. Phys., submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, University of Basel, Rheinsprung 21, CH–4051, Basel, Switzerland

    Marcus J. Grote

Authors
  1. Marcus J. Grote

Editor information

Editors and Affiliations

  1. Department of Aerospace Engineering, Technion — Israel Institute of Technology, Haifa, Israel

    Dan Givoli

  2. Department of Mathematics, University of Basel, Basel, Switzerland

    Marcus J. Grote

  3. Department of Mathematics, Stanford University, Stanford, California, USA

    George C. Papanicolaou

Rights and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grote, M.J. (2004). Nonreflecting Boundary Conditions for Time Dependent Waves. In: Givoli, D., Grote, M.J., Papanicolaou, G.C. (eds) A Celebration of Mathematical Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0427-4_5

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11439
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14299
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 14299
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp