Part of the book series:Ergebnisse der Mathematik und ihrer Grenzgebiete ((MATHE3,volume 18))
1368Accesses
Abstract
There are only finitely many distance-transitive graphs with given valency > 2. This result was first shown in Cameron, Praeger, Saxl & Seitz [183] by use of the classification of finite simple groups. Below we give a proof due to Weiss [779] which is independent of this classification. A basic ingredient to the proof of Weiss’ theorem is the celebrated Thompson-Wielandt Theorem. The proof of the latter theorem requires group-theoretic preparation which can be found in Section 7.1. The Thompson-Wielandt Theorem is the content of Section 7.2 and Weiss’ theorem is in Section 7.3. Subsequently we discuss results in the cases of large girth (Section 7.4), small valency (Section 7.5), and imprimitive graphs (Section 7.6). The state of the art in overall classification and a few related results are given in the final sections (7.7–8).
This is a preview of subscription content,log in via an institution to check access.
Preview
Unable to display preview. Download preview PDF.
Author information
Authors and Affiliations
Centrum voor Wiskunde en Informatica, Stichting Mathematisch Centrum, Kruislaan 413, NL-1098 SJ, Amsterdam, The Netherlands
Andries E. Brouwer & Arjeh M. Cohen
Institut für Angewandte Mathematik, Universität Freiburg, Hermann-Herder-Straße 10, D-7800, Freiburg im Breisgau, Germany
Arnold Neumaier
- Andries E. Brouwer
Search author on:PubMed Google Scholar
- Arjeh M. Cohen
Search author on:PubMed Google Scholar
- Arnold Neumaier
Search author on:PubMed Google Scholar
Rights and permissions
Copyright information
© 1989 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Brouwer, A.E., Cohen, A.M., Neumaier, A. (1989). Distance-Transitive Graphs. In: Distance-Regular Graphs. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74341-2_7
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-74343-6
Online ISBN:978-3-642-74341-2
eBook Packages:Springer Book Archive
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative