Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Material Classification Using CMOS Polarization Sensor

  • Chapter

Part of the book series:Studies in Computational Intelligence ((SCI,volume 461))

  • 2217Accesses

Abstract

Material classification is an important application in computer vision. The ability to detect the nature of the object surface from image data has a very high potential for applications ranging from low-level inspection to high-level object recognition. The inherent property of materials to partially polarize the reflected light can serve as a tool to classify them.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klinker, G., Shafer, S., Kanade, T.: Using a color reflection model to separate highlights from object color. In: Proceedings of International Conference on Computer Vision, pp. 145–150 (1987)

    Google Scholar 

  2. Shafer, S.: Using color to separate reflection components. Color Research Applications 10, 210–218 (1985)

    Article  Google Scholar 

  3. Healey, G., Blanz, W.: Identifying metal surfaces in color images. In: Proceedings of Conference in Optics, Electro-Optics, and Sensors (1988)

    Google Scholar 

  4. Healey, G., Binford, T.: Predicting material classes. In: Proceedings of DARPA Image Understanding Workshop, pp. 1140–1146 (1988)

    Google Scholar 

  5. Wolff, L.: Polarization based material classification from specular reflection. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 1059–1071 (1990)

    Article  Google Scholar 

  6. Chen, H., Wolff, L.: Polarization phase based method for material classification and object recognition in computer vision. International Journal of Computer Vision 28(1), 45–56 (1999)

    Google Scholar 

  7. Tominaga, S., Kimachi, A.: Polarization imaging for material classification. Optical Engineering 47(12), 123201-1–123201-14 (2008)

    Google Scholar 

  8. Drude, P.: The theory of optics, p. 278. Dover publications Inc., New York (1959)

    Google Scholar 

  9. Sarkar, M., Segundo, D.S., van Hoof, C., Theuwissen, A.: Integrated polarization analyzing CMOS image sensor. In: Proceedings of IEEE International Symposium on Circuits and Systems, pp. 621–624 (2010)

    Google Scholar 

  10. Brewster, D.: On the laws which regulate the polarization of light by reflection from transparent bodies. Hilosophical Transactions of the Royal Society of London 105, 128 (1815)

    Google Scholar 

  11. Gruev, V., der Spiegel, J.V., Engheta, N.: Advances in integrated polarization imaging sensors. In: IEEE Life Science Systems and Applications Workshop, pp. 62–65 (2009)

    Google Scholar 

  12. Siegal, R., Howell, J.R.: Thermal radiation heat transfer. McGraw-hill, New York (1981) ISBN: 1560328398

    Google Scholar 

  13. Gilberd, P.: The anomalous skin effect and the optical properties of metals. Journal of Physics F: Metal Physics 12, 1845–1860 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Electrical Engineering Dept, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India

    Mukul Sarkar

  2. Harvest Imaging , Kleine Schoolstraat 9, 3960, Bree, Belgium

    Albert Theuwissen

Authors
  1. Mukul Sarkar
  2. Albert Theuwissen

Corresponding author

Correspondence toMukul Sarkar.

Rights and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarkar, M., Theuwissen, A. (2013). Material Classification Using CMOS Polarization Sensor. In: A Biologically Inspired CMOS Image Sensor. Studies in Computational Intelligence, vol 461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34901-0_5

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp