Movatterモバイル変換


[0]ホーム

URL:


Skip to main content

Advertisement

Springer Nature Link
Log in

Design of a CMOS Polarization Sensor

  • Chapter

Part of the book series:Studies in Computational Intelligence ((SCI,volume 461))

  • 2294Accesses

Abstract

Compound eyes found in insects, besides performing their function in forming images and motion detection are also sensitive to other properties of light, i.e. the wavelengths or vector of skylight polarization. Polarization provides additional visual information than intensity and wavelength and also a more general description of light, and therefore it provides richer sets of descriptive physical constraints for the interpretation of the imaged scene.

This is a preview of subscription content,log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard, G., Wehner, R.: Functional similarities between polarization vision and color vision. Vision Research 17, 1019–1028 (1977)

    Article  Google Scholar 

  2. Wehner, R.: Polarization vision-a uniform sensory capacity? Journal of Experimental Biology 204, 2589–2596 (2001)

    Google Scholar 

  3. Reiley, D.: Polarization in optical design. PhD thesis, University of Alabama (1993)

    Google Scholar 

  4. Horváth, G., Varjú, D.: Polarized light in animal vision. Springer, Heidelberg (2003)

    Google Scholar 

  5. http://www.microscopyu.com/articles/polarized/index.html

  6. Stokes, G.: On the comppostion and resolution of streams of polarized light from different sources. Transactions of Cambridge Philosophical Society 9, 399–416 (1852); reprinted in Mathematics and Physics Papers, vol. 3, p. 233. Cambridge University Press (1901)

    Google Scholar 

  7. Poincaré, H.: Theorie Mathematique de la Lumiere, ch. 12, vol. 2. Gauthiers-Villars (1892)

    Google Scholar 

  8. Jerrard, H.: Transmission of light through birefringent and optically active media: the poincaré sphere. Journal of Optical Society of America 44(8), 634–640 (1954)

    Article  Google Scholar 

  9. Tyo, J., Goldstein, D., Chenault, D., Shaw, J.: A review of passive imaging polarimetery for remote sensing applications. Applied Optics 45, 5453–5469 (2006)

    Article  Google Scholar 

  10. November, L.J., Wilkins, L.M.: Liquid crystal polarimeter: a solid state imager for solar vector magnetic fields. Optical Engineering 34(6), 1659–1668 (1995)

    Article  Google Scholar 

  11. de Lang, H., Bouwhuis, G.: Colour separation in colour-television cameras. Philips Technical Review 24(9), 263–298 (1962)

    Google Scholar 

  12. Murata, N., Hirano, C., Ohoba, M., Nagahara, S.: Development of a 3-mos color camera. SMPTE Journal, 1270–1273 (1983)

    Google Scholar 

  13. Andreou, A., Kalayjian, Z.: Polarization imaging: principles and integrated polarimeters. IEEE Sensors Journal 2(6), 566–576 (2002)

    Article  Google Scholar 

  14. Zhao, X., Boussaid, F., Bermak, A., Chigrinov, V.: Thin photo-patterned micropolarizer array for cmos image sensors. IEEE Photonics Technology Letters 21(12), 805–807 (2009)

    Article  Google Scholar 

  15. Gruev, V., der Spiegel, J.V., Engheta, N.: Image sensor with focal plane polarization sensitivity. In: Proceedings of International Symposium on Circuits and Systems, pp. 1028–1031 (2008)

    Google Scholar 

  16. Faris, S.: Methods for manufacturing micropolarizers, u.s. patent 5, 327, 285 (1994)

    Google Scholar 

  17. Guo, J., Brady, D.: Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry. Applied Optics 39(10), 1486–1492 (2000)

    Article  Google Scholar 

  18. Gruev, V., Ortu, A., Lazarus, N., der Spiegel, J.V., Engheta, N.: Fabrication of a dual-tier thin film micropolarization array. Optical Express 15(8), 4994–5007 (2007)

    Article  Google Scholar 

  19. Hertz, H.: Ueber die einwirkung einer geradlinigen electrischen schwingung auf eine benachbarte strombahn. Annalen der Physics 270(5), 155–170 (1888)

    Article  Google Scholar 

  20. Nordin, G., Meier, J., Deguzman, P., Jones, M.: Micropolarizer array for infrared imaging polarimetry. Journal of Optical Society of America, A 16, 1168–1174 (1999)

    Article  Google Scholar 

  21. Tokuda, T., Yamada, H., Shimohata, H., Sasagawa, K., Ohta, J.: Polarization-analyzing cmos image sensor with embedded wire-grid polarizer. In: Proceedings of International Image Sensor Workshop (2009)

    Google Scholar 

  22. Tokuda, T., Yamada, H., Sasagawa, K., Ohta, J.: Polarization-analyzing cmos image sensor with monolithically embedded polarizer for microchemistry systems. IEEE Transactions on Biomedical Circuits and Systems 3(5), 259–266 (2009)

    Article  Google Scholar 

  23. Wang, J., Walters, F., Liu, X., Sciortino, P., Deng, X.: High-performance, large area, deep ultraviolet to infrared polarizers based on 40nm line/78nm space nanowire-grids. Applied Physics Letters 90, 061104–1–3 (2007)

    Google Scholar 

  24. Ahn, S.W., Lee, K.D., Kim, J.S., Kim, S.H., Park, J.D., Lee, S.H., Yoon, P.W.: Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography. Nanotechnology 16, 1874–1877 (2005)

    Article  Google Scholar 

  25. Lamb, H.: On the reflection and transmission of electric waves by a metallic grating. Proceedings of London Mathematical Society 29(1), 523–546 (1898)

    Article MathSciNet MATH  Google Scholar 

  26. Weber, T., Fuchs, H.J., Schmidt, H., Kley, E.B., A.T.

    Google Scholar 

  27. Malacara, D.: Physical optics and light measurements, vol. 26, p. 157. Academic Press (1989) ISBN:0124759718

    Google Scholar 

  28. Carter, J.M., Savas, R.C., Sakes, T.A., Walsh, M.E., O’Reilly, T.: Interfernce lithography. MTL Annual Report, Submicron and Nanometer Structures, 186–188 (2003)

    Google Scholar 

  29. Chen, C., Yu, T., Lee, Y.: Direct metal transfer lithography for fabricating wire grid polarizer on flexible plastic substrate. Journal of Microelecttromechanical Systems 20(4), 916–921 (2011)

    Article  Google Scholar 

  30. Collett, E.: Field Guide to Polarization, p. 25. SPIE Press, Bellingham (2005) ISBN: 9780819458681

    Book  Google Scholar 

  31. Zhou, Y., Klotzkin, D.J.: Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1:5μm. Applied Optics 47(20), 3555–3560 (2008)

    Article  Google Scholar 

  32. Hu, C., Liu, D.: Investigation of aluminum wire-grid polarizers for visible wavelengths using rigorous coupled wave analysis. In: Proceedings of SPIE, vol. 7134 (2008)

    Google Scholar 

  33. Xu, M., Urbach, H.P., de Boer, D.K.G., Cornelissen, H.J.: Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon. Optics Express 13(7), 2303–2320 (2005)

    Article  Google Scholar 

  34. Gruev, V., Perkins, R., York, T.: Ccd polarization imaging sensor with aluminum nanowire optical filters. Optics Express 18, 19087–19094 (2010)

    Article  Google Scholar 

  35. Zhao, X., Bermak, A., Boussaid, F., Chigrinov, V.: Liquid-crytal micropolarimeter array for visible linear and circular polarization imaging. In: Proceedings of International Symposium on Circuits and Systems, pp. 637–640 (2009)

    Google Scholar 

  36. Sarkar, M., Segundo, D.S., van Hoof, C., Theuwissen, A.J.P.: Polarization analyzing cmos image sensor. In: Proceedings of International Symposium on Circuits and Systems, pp. 621–624 (2010)

    Google Scholar 

  37. Zhao, X., Bermak, A., Boussaid, F.: A cmos digital pixel sensor with photopatterened micropolarizer array for real time focal plane polarization imaging. In: Proceedings of IEEE Biomedical Circuits and Systems Conference, pp. 145–148 (2008)

    Google Scholar 

  38. Guillaumee, M., Dunbar, L., Santschi, C., Grenet, E., Eckert, R., Martin, O., Stanley, R.: Polarization sensitive silicon photodiodes using nano-structured metallic grids. Applied Physics Letters 94, 193503-1–193503-3 (2009)

    Google Scholar 

  39. Catrysse, P., Wandell, B.: Integrated color pixels in 0.18μm complementary metal oxide semiconductor technology. Journal of Optical Society of America A 20(12), 2293–2306 (2003)

    Article  Google Scholar 

  40. Catrysse, P., Wandell, B., Gamal, A.E.: An integrated color pixel in 0.18μm cmos technology. Technical Digest of IEEE International Electron Device Meeting, 24.4.4 (2001)

    Google Scholar 

  41. Goldstein, D., Chenault, D., Pezzaniti, J.: Polarimetric characterization of spectralon. In: Polarization An Integrated Color Pixel in 0.18μm CMOS Technology: Proceedings of Measurement, Analysis, and Remote Sensing II SPIE, vol. 3754, pp. 126–136 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Electrical Engineering Dept, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India

    Mukul Sarkar

  2. Harvest Imaging , Kleine Schoolstraat 9, 3960, Bree, Belgium

    Albert Theuwissen

Authors
  1. Mukul Sarkar
  2. Albert Theuwissen

Corresponding author

Correspondence toMukul Sarkar.

Rights and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarkar, M., Theuwissen, A. (2013). Design of a CMOS Polarization Sensor. In: A Biologically Inspired CMOS Image Sensor. Studies in Computational Intelligence, vol 461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34901-0_4

Download citation

Publish with us

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 21449
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info
Hardcover Book
JPY 21449
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide -see info

Tax calculation will be finalised at checkout

Purchases are for personal use only


[8]ページ先頭

©2009-2025 Movatter.jp