Part of the book series:Studies in Computational Intelligence ((SCI,volume 461))
2294Accesses
Abstract
Compound eyes found in insects, besides performing their function in forming images and motion detection are also sensitive to other properties of light, i.e. the wavelengths or vector of skylight polarization. Polarization provides additional visual information than intensity and wavelength and also a more general description of light, and therefore it provides richer sets of descriptive physical constraints for the interpretation of the imaged scene.
This is a preview of subscription content,log in via an institution to check access.
Access this chapter
Subscribe and save
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
- Chapter
- JPY 3498
- Price includes VAT (Japan)
- eBook
- JPY 17159
- Price includes VAT (Japan)
- Softcover Book
- JPY 21449
- Price includes VAT (Japan)
- Hardcover Book
- JPY 21449
- Price includes VAT (Japan)
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Bernard, G., Wehner, R.: Functional similarities between polarization vision and color vision. Vision Research 17, 1019–1028 (1977)
Wehner, R.: Polarization vision-a uniform sensory capacity? Journal of Experimental Biology 204, 2589–2596 (2001)
Reiley, D.: Polarization in optical design. PhD thesis, University of Alabama (1993)
Horváth, G., Varjú, D.: Polarized light in animal vision. Springer, Heidelberg (2003)
Stokes, G.: On the comppostion and resolution of streams of polarized light from different sources. Transactions of Cambridge Philosophical Society 9, 399–416 (1852); reprinted in Mathematics and Physics Papers, vol. 3, p. 233. Cambridge University Press (1901)
Poincaré, H.: Theorie Mathematique de la Lumiere, ch. 12, vol. 2. Gauthiers-Villars (1892)
Jerrard, H.: Transmission of light through birefringent and optically active media: the poincaré sphere. Journal of Optical Society of America 44(8), 634–640 (1954)
Tyo, J., Goldstein, D., Chenault, D., Shaw, J.: A review of passive imaging polarimetery for remote sensing applications. Applied Optics 45, 5453–5469 (2006)
November, L.J., Wilkins, L.M.: Liquid crystal polarimeter: a solid state imager for solar vector magnetic fields. Optical Engineering 34(6), 1659–1668 (1995)
de Lang, H., Bouwhuis, G.: Colour separation in colour-television cameras. Philips Technical Review 24(9), 263–298 (1962)
Murata, N., Hirano, C., Ohoba, M., Nagahara, S.: Development of a 3-mos color camera. SMPTE Journal, 1270–1273 (1983)
Andreou, A., Kalayjian, Z.: Polarization imaging: principles and integrated polarimeters. IEEE Sensors Journal 2(6), 566–576 (2002)
Zhao, X., Boussaid, F., Bermak, A., Chigrinov, V.: Thin photo-patterned micropolarizer array for cmos image sensors. IEEE Photonics Technology Letters 21(12), 805–807 (2009)
Gruev, V., der Spiegel, J.V., Engheta, N.: Image sensor with focal plane polarization sensitivity. In: Proceedings of International Symposium on Circuits and Systems, pp. 1028–1031 (2008)
Faris, S.: Methods for manufacturing micropolarizers, u.s. patent 5, 327, 285 (1994)
Guo, J., Brady, D.: Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry. Applied Optics 39(10), 1486–1492 (2000)
Gruev, V., Ortu, A., Lazarus, N., der Spiegel, J.V., Engheta, N.: Fabrication of a dual-tier thin film micropolarization array. Optical Express 15(8), 4994–5007 (2007)
Hertz, H.: Ueber die einwirkung einer geradlinigen electrischen schwingung auf eine benachbarte strombahn. Annalen der Physics 270(5), 155–170 (1888)
Nordin, G., Meier, J., Deguzman, P., Jones, M.: Micropolarizer array for infrared imaging polarimetry. Journal of Optical Society of America, A 16, 1168–1174 (1999)
Tokuda, T., Yamada, H., Shimohata, H., Sasagawa, K., Ohta, J.: Polarization-analyzing cmos image sensor with embedded wire-grid polarizer. In: Proceedings of International Image Sensor Workshop (2009)
Tokuda, T., Yamada, H., Sasagawa, K., Ohta, J.: Polarization-analyzing cmos image sensor with monolithically embedded polarizer for microchemistry systems. IEEE Transactions on Biomedical Circuits and Systems 3(5), 259–266 (2009)
Wang, J., Walters, F., Liu, X., Sciortino, P., Deng, X.: High-performance, large area, deep ultraviolet to infrared polarizers based on 40nm line/78nm space nanowire-grids. Applied Physics Letters 90, 061104–1–3 (2007)
Ahn, S.W., Lee, K.D., Kim, J.S., Kim, S.H., Park, J.D., Lee, S.H., Yoon, P.W.: Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography. Nanotechnology 16, 1874–1877 (2005)
Lamb, H.: On the reflection and transmission of electric waves by a metallic grating. Proceedings of London Mathematical Society 29(1), 523–546 (1898)
Weber, T., Fuchs, H.J., Schmidt, H., Kley, E.B., A.T.
Malacara, D.: Physical optics and light measurements, vol. 26, p. 157. Academic Press (1989) ISBN:0124759718
Carter, J.M., Savas, R.C., Sakes, T.A., Walsh, M.E., O’Reilly, T.: Interfernce lithography. MTL Annual Report, Submicron and Nanometer Structures, 186–188 (2003)
Chen, C., Yu, T., Lee, Y.: Direct metal transfer lithography for fabricating wire grid polarizer on flexible plastic substrate. Journal of Microelecttromechanical Systems 20(4), 916–921 (2011)
Collett, E.: Field Guide to Polarization, p. 25. SPIE Press, Bellingham (2005) ISBN: 9780819458681
Zhou, Y., Klotzkin, D.J.: Design and parallel fabrication of wire-grid polarization arrays for polarization-resolved imaging at 1:5μm. Applied Optics 47(20), 3555–3560 (2008)
Hu, C., Liu, D.: Investigation of aluminum wire-grid polarizers for visible wavelengths using rigorous coupled wave analysis. In: Proceedings of SPIE, vol. 7134 (2008)
Xu, M., Urbach, H.P., de Boer, D.K.G., Cornelissen, H.J.: Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon. Optics Express 13(7), 2303–2320 (2005)
Gruev, V., Perkins, R., York, T.: Ccd polarization imaging sensor with aluminum nanowire optical filters. Optics Express 18, 19087–19094 (2010)
Zhao, X., Bermak, A., Boussaid, F., Chigrinov, V.: Liquid-crytal micropolarimeter array for visible linear and circular polarization imaging. In: Proceedings of International Symposium on Circuits and Systems, pp. 637–640 (2009)
Sarkar, M., Segundo, D.S., van Hoof, C., Theuwissen, A.J.P.: Polarization analyzing cmos image sensor. In: Proceedings of International Symposium on Circuits and Systems, pp. 621–624 (2010)
Zhao, X., Bermak, A., Boussaid, F.: A cmos digital pixel sensor with photopatterened micropolarizer array for real time focal plane polarization imaging. In: Proceedings of IEEE Biomedical Circuits and Systems Conference, pp. 145–148 (2008)
Guillaumee, M., Dunbar, L., Santschi, C., Grenet, E., Eckert, R., Martin, O., Stanley, R.: Polarization sensitive silicon photodiodes using nano-structured metallic grids. Applied Physics Letters 94, 193503-1–193503-3 (2009)
Catrysse, P., Wandell, B.: Integrated color pixels in 0.18μm complementary metal oxide semiconductor technology. Journal of Optical Society of America A 20(12), 2293–2306 (2003)
Catrysse, P., Wandell, B., Gamal, A.E.: An integrated color pixel in 0.18μm cmos technology. Technical Digest of IEEE International Electron Device Meeting, 24.4.4 (2001)
Goldstein, D., Chenault, D., Pezzaniti, J.: Polarimetric characterization of spectralon. In: Polarization An Integrated Color Pixel in 0.18μm CMOS Technology: Proceedings of Measurement, Analysis, and Remote Sensing II SPIE, vol. 3754, pp. 126–136 (1999)
Author information
Authors and Affiliations
Electrical Engineering Dept, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India
Mukul Sarkar
Harvest Imaging , Kleine Schoolstraat 9, 3960, Bree, Belgium
Albert Theuwissen
- Mukul Sarkar
Search author on:PubMed Google Scholar
- Albert Theuwissen
Search author on:PubMed Google Scholar
Corresponding author
Correspondence toMukul Sarkar.
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Sarkar, M., Theuwissen, A. (2013). Design of a CMOS Polarization Sensor. In: A Biologically Inspired CMOS Image Sensor. Studies in Computational Intelligence, vol 461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34901-0_4
Download citation
Publisher Name:Springer, Berlin, Heidelberg
Print ISBN:978-3-642-34900-3
Online ISBN:978-3-642-34901-0
eBook Packages:EngineeringEngineering (R0)
Share this chapter
Anyone you share the following link with will be able to read this content:
Sorry, a shareable link is not currently available for this article.
Provided by the Springer Nature SharedIt content-sharing initiative